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1 Introduction

Poisson process, homogeneous or inhomogeneous, plays a fundamental role in the theory and
application of stochastic process. However, the intensity estimation of inhomogeneous Poisson
process remains difficult. Since 80s, tons of works have emerged to tackle this problem. Ramlau-
Hansen (1983) and Diggle (1985) propose to use the smoothing kernel method that was originally
designed for density estimation (Rosenblatt, 1956). Another idea is proposed by Bartoszynski et al.
(1981) and Flaxman et al. (2017) to formulate the problem in a Reproducing Kernel Hilbert Space
(RKHS). More recent works are focusing on direct modeling of the underlying Cox process from the
Bayesian perspective (Adams et al. 2009, Illian et al. 2013).

In this paper, we will be focusing on three estimation methods: smoothing kernel method, Mercer
kernel method, as well as Bayesian method. The remaining part of this section introduces the general
background of Poisson process and Cox process. Section 2 presents some general notations. Key
results of the three methods as well as the corresponding assumptions are listed in Section 3. The
proof for relevant theorems are presented in Section 4.

1.1 Poisson process

Consider a point process over domain S ⊂ Rd. For a Lebesgue measurable subset Γ ⊂ S, denote by
N(Γ) the number of points inside T . Define the first-order intensity (aka local intensity) as:

λ(s) = lim
|ds|→0

E[N(ds)]

|ds|
(1.1.1)

The general (inhomogeneous) Poisson process is a point process given by

N(Γ) ∼ Poisson(

∫
Γ

λ(s)ds) (1.1.2)

When λ(s) is constant over S, the process is called a homogeneous Poisson process. In that case the
number of points is only depending on the volume of the subspace, i.e.

N(Γ) ∼ Poisson(λ|Γ|) : λ(s) ≡ λ (1.1.3)

Given n iid samples x1, ..., xn drawn from some Poisson process over domain S ⊂ Rd, our objective
is to estimate the underlying intensity λ(x). Condition on a intensity function, the likelihood function
for the observations is given by

L(x1, ..., xn|λ(x)) =

n∏
i=1

λ(xi)e
−

∫
S
λ(x)dx (1.1.4)

The log-likelihood function is thus

`(x1, ..., xn|λ(x)) =

n∑
i=1

log(λ(xi))−
∫
S

λ(x)dx (1.1.5)

For applications involving time series data, e.g. financial data and medical data, the one-dimension
Poisson process where d = 1 is of special interest. For many methods to be discussed in this paper,
the analysis of one-dimension Poisson process is typically easier and yields tractable solutions.
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1.2 Cox process

The Cox process, also known as doubly stochastic Poisson process, is a Poisson process whose
intensity function (or surface function) λ(s) is itself drawn from a stochastic process Λ(s). We are
interested in estimating a realization of the underlying process Λ(s).

Under a one-dimensional scenario, we call a Cox process a stationary process if it has a stationary
rate process. A formal definition is as follows:

• Λ(s) : s ∈ S ⊂ R is stationary, non-zero valued random process.

• Conditional on a realization λ(s) of Λ(s), the point process is an inhomogeneous Poisson
process with intensity λ(s).

For two-dimensional scenario, a well-known Cox process is the log-Gaussian Cox process (LGCP,
Moller et al., 1998), for which the logarithm of the intensity function is a Gaussian process over R2.
I.e.

λ(s) = exp(Y (s)) (1.2.1)

where Y = {Y (s)|s ∈ R2} is a real-valued Gaussian process. In other words, the joint distribution
of any finite vector (Y (s1), ..., Y (sn)) is Gaussian. Under very weak conditions, the Log-Gaussian
Cox process exhibits pretty good properties. The process can also be extended to higher dimensions,
but is mostly used in R2.

Another important Cox process is the sigmoidal Gaussian Cox process (SGCP). For which the
intensity function is defined by:

λ(s) = λ∗σ(Y (s)) (1.2.2)

where Y = {Y (s)|s ∈ S} is a Gaussian process, λ∗ is a hyper-parameter determines the upper bound
of the intensity function, σ(·) is the sigmoid function.

σ(x) =
1

1 + e−x
(1.2.3)

2 Notations and assumptions

Here we list some notations that are consistently used throughout the paper. Different methods may
have specific assumptions and notations. Those are introduced in respective sections.

• S: The domain of the point process of interest. Generally S ⊂ Rd. For one-dimension cases
we sometimes write S = [0, T ] ⊂ R.

• λ(s): A realization of the intensity process Λ(s) over the domain S.

• Y (s): A real-valued Gaussian process over S.

• K: Kernel. Depending on the scenario, it could be smoothing kernel function k(·), Mercer
kernel function k(·, ·), or the Gram matrix of the Mercer kernel Kij = k(xi, xj).

• h: Bandwidth of smoothing kernels. The smoothing kernel estimators are typically sub-
scripted with h.

• H: Some reproducing kernel Hilbert space (RKHS).

• ηj , ej : The jth eigenvalue and eigenvector of some RKHS.

3 Key results

3.1 Smoothing kernel method

Given observations X1, ..., Xn ∈ S ⊂ Rd from a Cox process with intensity function λ(x). For a
given kernel function k, define the estimator of the intensity as

λ̂h(x) , (

n∑
i=1

1

h
k(
‖x− xi‖

h
))/ph(x) (3.1.1)
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where h is bandwidth, ph(x) =
∫
S

1
hk(‖x−u‖h )du is an end correction.

Define the risk, or mean square error as

Rk(h) , E[(λ̂h(x)− Λ(x))2] (3.1.2)

It is well known that the choice of the kernel function is of very secondary importance as compared
to the selection of bandwidth. For general kernel functions, close-form risks are hard to find. The
optimal bandwidth is chosen via cross validation.

However, for a one-dimension stationary Cox process, we can directly analyze the risk function and
derive the optimal bandwidth therefrom. The idea is to first study the risk of uniform kernels, then
extend the result to other kernels. Suppose S = [0, T ] ⊂ R, we have the following theorem:

Theorem 1 (Diggle, 1985). For a uniform kernel ku(x) ≡ 1
2 ,−1 ≤ x ≤ 1, the risk is given by

Rku(h) = v(0) + µ
1− 2µM(h)

2h
+ (

µ

2h
)2

∫ 2h

0

M(z)dz (3.1.3)

where v(|x− y|) = E[Λ(x)Λ(y)], µ = E[Λ(x)],M(h) = 2µ−2
∫ h

0
v(u)du.

In order to find the optimal bandwidth that minimizes Rku(h), we need to estimate µ and M(h).
Diggle (1985) suggests use µ̂ = n/T and M̂(h) = Tn−2

∑
i

∑
j 6=iQ(xi, xj , h), where Q is an

indicator function.

Q(x, y, h) =

{
0 : |x− y| > h
1 : |x− y| ≤ h, |x− y| ≤ min(x, T − x)
2 : |x− y| ≤ h, |x− y| > min(x, T − x)

For general kernels other than uniform kernel, people usually choose bandwidth hk = (3c)−1/2hu,
where c =

∫
x2

h k(xh ), hu is the optimal bandwidth using uniform kernel. Easy to check for uniform
kernel supported on [−1, 1], c = 1

3 , thus hku = hu. Simulation results show that such approximation
yields very close bandwidths.

3.2 RKHS method (I)

Let k : S × S → R be a Mercer kernel supported on a compact set S ⊂ Rd. Denote by Hk its
associated RKHS. Model the intensity function of an inhomogeneous Poisson process as follows:

λ̂(x) , af2(x) : f ∈ Hk (3.2.1)

Formulate the problem as the minimization of the negative log-likelihood (1.1.5) penalized by squared
Hilbert space norm:

min
f∈Hk

J(f) = −
n∑
i=1

log(af2(xi)) + a

∫
S

f2(x)dx+ γ‖f‖2Hk
(3.2.2)

where a, γ > 0 are tuning parameters. Recall the two important properties of RKHS:

Lemma 1 (Mercer Expansion). See Section 5.7 of lecture note (Nonparametric). For a kernel k,
suppose supx,y k(x, y) <∞. Define eigenvalues ηj and orthonormal eigenfunctions ej(x) by∫

k(x, y)ej(y)dy = ηjej(x)

Then we have Mercer’s expansion for functions inHk: f(x) =
∑
i αik(xi, x) =

∑∞
j=1 βjej(x)

Furthermore, for f(x) =
∑
j ajej(x), g(x) =

∑
j bjej(x), we have

〈f, g〉 =

∞∑
j=1

ajbj
ηj

, ‖f‖2Hk
=

∑
j

a2
j

ηj
(3.2.3)
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Lemma 2 (Representer Theorem). See Section 5.8 of lecture note (Nonparametric). Let ` be a loss
function depending on (X1, Y1), ..., (Xn, Yn) and on f(X1), ..., f(Xn). Let f̂ minimize

`+ g(‖f‖2Hk
)

where g is any monotone increasing function. Then f̂ has the form

f̂(x) =

n∑
i

αik(xi, x)

Due to the integral term of f2, the representer theorem does not apply directly to the objective
function J(f) in 3.2.2. We will show that we are able to construct a new kernel k̃ such that the
objective function under the new kernel satisfies the requirements of representer theorem.

Expand f as in Lemma 1 for J(f) as follows:

J(f) = −
n∑
i=1

log(af2(xi)) + a‖f‖2L2(S) + γ‖f‖2Hk

= −
n∑
i=1

log(af2(xi)) + a

∞∑
j=1

b2j + γ

∞∑
j=1

b2j
ηj

= −
n∑
i=1

log(af2(xi)) +

∞∑
j=1

b2j
ηj(aηj + γ)−1

(3.2.4)

Define the new kernel as

k̃(x, x′) ,
∞∑
j=1

ηj
aηj + γ

ej(x)ej(x
′) (3.2.5)

Function 3.2.4 can be written as

J(f) = −
n∑
i=1

log(af2(xi)) + ‖f‖2Hk̃
(3.2.6)

Theorem 2 (Flaxman et al., 2017). There exists a minimizer of problem 3.2.2 for observations
x1, ..., xn, which takes the form f∗(·) =

∑n
i=1 αik̃(xi, ·)

The problem then comes down to the computation of k̃. For kernels whose explicit Mercer expansions
are known, we can directly apply the adjustment. In the case when no Mercer expansion is available,
one can approximate it numerically by using the Nystrom method (Rasmussen and Williams, 2006).

Example 1 (Sobolev Space). A kernel on the s-order Sobolev space on [0, 1] has Mercer expansion

k(x, y) = 1 +

∞∑
j=1

2 cos(2πj(x− y))

(2πj)2s

the adjusted kernel k̃ is given by

k̃(x, y) =
1

1 + γ
+

∞∑
j=1

2 cos(2πj(x− y))

1 + γ(2πj)2s

The penalized risk in Eq. 3.2.4 can be minimized with gradient descent. Let α = [α1, ..., αN ]T , K̃
be the Gram matrix such that K̃ij = k̃(xi, xj). Therefore, [f(x1), ..., f(xN )]T = K̃α.
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The gradient of the objective function is thus given by

∇αJ = −∇α
∑
i

log(af2(xi)) + γ∇α‖f‖2Hk̃

= −∇α
∑
i

log(a(
∑
j

k̃ijαj)
2) + γ∇ααT K̃α

= −
∑
i

2a(
∑
j k̃ijαj)∇α

∑
j k̃ijαj

a(
∑
j k̃ijαj)

2
+ 2γK̃α

= −2
∑
i

(K̃·i./(K̃α)) + 2γK̃α

(3.2.7)

where ./ denotes the element-wise division.

To select the hyperparameter γ and a, it is recommended to crossvalidate on the negative log-
likelihood of the inhomogeneous Poisson process from Eq. 1.1.5. However, the integral

∫
S
f2(u)du

is usually intractable. As an approximation, one can use a set of locations u = (u1, ..., um), and let∫
S

f2(u)du ≈ 1

m

∑
i

f2(ui)

It is worth noting that despite the representer’s theorem does not hold for the unadjusted kernel k (Eq.
3.2.2), a solution of the form

∑N
j=1 αjk(xj , ·) can still work as an approximation. Fig. 3.2 compares

over a synthetic dataset the performance of the smoothing kernel method, the RKHS method, and the
approximated method.

Figure 1: A synthetic dataset, comparing the smoothing kernel method (purple), the RKHS method
with adjusted squared exponential kernel (red), the RKHS method with unadjusted squared exponen-
tial kernel (green). The rug plot at bottom shows the location of data points.

3.3 RKHS method (II)

In many cases, we may have multiple draws from the Poisson process. Generally, two different
observations may come from different subsets of S. It turns out that the RKHS method can be very
useful for data of this type.

Consider there are n draws from some one-dimension Poisson process with intensity function λ(x).
The ith observation is a set of Ti data points xi = {xi1, ..., xiTi

}. As per Eq. 1.1.4, the likelihood of
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the ith observation is given by:

L(xi|λ(x)) =

Ti∏
t=1

λ(xit)e
−

∫ Ti
0 λ(x)dx (3.3.1)

Thus for all the n observations

L(x1, ..., xn|λ(x)) =

n∏
i=1

Ti∏
t=1

λ(xit)e
−

∑n
i=1

∫ Ti
0 λ(x)dx (3.3.2)

Similar to Section 3.2, we can formulate a maximum penalized likelihood problem in a RKHS:

max
λ̂∈Hs(0,T

J =

n∑
i=1

Ti∑
t=1

log λ̂(xit)−
n∑
i=1

∫ Ti

0

λ̂(x)dx− ‖λ̂‖2Hs (3.3.3)

where T = maxTi, and

Hs(0, T ) = {f |f (j) ∈ L2(0, L); j = 0, 1, ..., s ≥ 1} (3.3.4)

We then have the following important conclusions:

Lemma 3 (Lions and Magenes, 1972). Hs(0, T ) is a reproducing kernel Hibert space.

Theorem 3 (Bartoszynski et al., 1981). The maximum problem 3.3.3 has a unique maximizer in
Hs(0, T ) ∩ {λ|λ ≥ 0}.

Despite the existence of an unique maximizer, simply solving problem 3.3.3 with an ordinary
optimization algorithm could be highly storage demanding. An efficient approximation is to divide
the range (0, T ) into a set of intervals. It can be shown that if the optimal intensity function λ∗ is
nondecreasing, then λ∗ falls precisely in such a set.

3.4 Bayesian method

The basic strategy of Bayesian approaches is to put a prior on the underlying Cox process. The
inference of Bayesian estimators, however, is typically intractable and often relies on techniques like
MCMC and Laplace approximation. For this part, we will briefly introduce two Bayesian approache
and their inference schemes.

I. Log-Gaussian Cox process (LGCP) approach

Let X = {x1, ..., xn} ⊂ Γ ⊂ S be the observations, suppose the intensity function have the form

log λ(x|θ, z(x)) = Q(x)β + z(x) (3.4.1)

where Q(x) is a covariate vector with β an associated coefficient vector. z(X) = {z(x1), ..., z(xn)}
denotes the n-variate zero mean Gaussian distributed variables with covariance matrix Cξ(X,X) =
(Cξ(xi, xj))i,j=1,...,n, with ξ the vector for hyperparameters for the covariance function. Write
θ = (β, ξ) as a collection of all the parameters. The likelihood of LGCP is therefore given by

L(X|θ, z) = exp (|Γ| −
∫

Γ

λ(u|θ, z(u))du)
∏
i

λ(xi|θ, z(xi)) (3.4.2)

To apply MCMC, we will have to cope with the intractable integral over Γ. A common method
is approximating with finite grid. Pick G points u1, ...uG, the integral can be approximated by∑G
g=1 λ(ug|θ, z(ug))∆g , where ∆g is the area of the gth grid. To implement the approximation, we

need to sample G variables from the Gaussian process, which involves computing the inverse of the
covariance matrix within each MCMC iteration.

II. Sigmoidal Gaussian Cox process (SGCP) approach

Define the intensity function as
λ(s) = λ∗σ(g(s)) (3.4.3)

where g(s) : Γ→ R is a random scalar function with Gaussian process prior.
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Apply the Bayes’ theorem, the posterior can be written as:

p(g|X1, ..., Xn) =
GP(g)Ln∫
GP(g)Lndg

(3.4.4)

where Ln is the likelihood function (Eq. 1.1.4).

Ln = exp (−
∫

Γ

λ∗σ(g(s))ds)

n∏
i=1

λ∗σ(g(xi)) (3.4.5)

Standard MCMC are unable to cope with the posterior due to its doubly-intracbility: the intractable
integral over Γ and the intractable integral over g. A possible fix is to augment the Markov chain
with latent variables. We can then use Markov transitions to sample from the joint distribution of
observations and latent variables.

4 Proof outlines

4.1 Smoothing kernel method

Proof of Theorem 1. For a uniform kernel supported on [−1, 1], ignoring the end-correction, the
smoothing kernel estimator is given by

λ̃h(x) = (2h)−1N([x− h, x+ h]) (4.1.1)

where N(Γ) denotes the number of points of the underlying Cox process located inside interval Γ
(see Eq. 1.1.2).

By stationarity, Rk(h) does not depend on x. Also, conditional on the realization of the rate process
Λ(x), N([x− h, x+ h]) follows a Poisson distribution with mean

∫ h
h

Λ(x)dx. Thus,

E[(λ̃h(0)− Λ(0))2|Λ(x)] = (2h)−2

∫ h

−h
Λ(x)dx+ ((2h)−1

∫ h

−h
Λ(x)dx− Λ(0))2

= (2h)−2(

∫ h

−h
Λ(x)dx+

∫ h

−h

∫ h

−h
Λ(x)Λ(y)dxdy)− h−1Λ(0)

∫ h

−h
Λ(x)dx+ (Λ(0))2

(4.1.2)

Take expectations with respect to Λ(x):

Rku(h) = (2h)−1µ+ (2h)−2

∫ h

−h

∫ h

−h
v(|x− y|)dxdy − h−1

∫ h

−h
v(|x|)dx+ v(0) (4.1.3)

Substitute x− y by z and use the definition of M(h) we can get Eq. 3.1.3.

4.2 RKHS method (I)

Proof of Theorem 2. Since
∑
j

b2j
ηj
< ∞ if and only if

∑
j

b2j
ηj(aηj+γ)−1 < ∞, we have f ∈ Hk if

and only if f ∈ Hk̃. In other words, the two Hilbert spaces correspond to exactly the same set of
functions. Thus, optimizing over Hk is equivalent to optimizing over Hk̃. The proof is done by
applying the representer theorem (see Lemma 2).

Proof of Example 1. The kernel function of the Sobolev space can be written as

k(x, y) = 1 +

∞∑
j=1

2 cos(2πj(x− y))

(2πj)2s

= 1 +

∞∑
j=1

2

(2πj)2s
[cos (2πjx) cos (2πjy) + sin (2πjx) sin (2πjy)]

= 1 +
(−1)s−1

(2s)!
B2s({x− y})

(4.2.1)
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where B2s({x− y}) is the Bernoulli polynomial of degree 2s applied to the fractional part of x− y.
Note that ∫ 1

0

2 cos (2πjx) sin (2πj′x)dx = 0∫ 1

0

2 cos (2πjx) cos (2πj′x)dx = δ(j − j′)∫ 1

0

2 sin (2πjx) sin (2πj′x)dx = δ(j − j′)

(4.2.2)

Thus, the Mercer expansion of the kernel function is given by

k(x, y) =
∑
j

ηjej(x)ej(y) (4.2.3)

where ηj = (2πj)(−2s), ej(x) =
√

2 cos (2πjx)

Apply Eq. 3.2.5, the adjusted kernel function is given by

k̃(x, y) =
∑
j

ηj
ηj + γ

ej(x)ej(y)

=
1

1 + γ
+

∑
j

2 cos (2πj(x− y))

1 + γ(2πj)(2s)

(4.2.4)

4.3 RKHS method (II)

Proof of Theorem 3. We will show the problem is convex. The set Hs(0, T ) ∩ {λ|λ ≥ 0} is clearly
closed and convex. Since Hs(0, T ) is a reproducing kernel Hilbert space (Lemma 3), the pointwise
evaluation function is continuous. On the other hand, as per the property of norms, for any sequence
such that λm → λ0 in the Hs(0, T ) norm, we have

∫ t
0
λn(τ)dτ →

∫ t
0
λ0(τ)dτ holds. As a result,

the objective function J is continuous in Hs(0, T ) ∩ {λ|λ ≥ 0}. Finally, it can be shown that the
second Gateaux variation of J at λ in the direction ξ is given by

J
′′
(λ)(ξ, ξ) = −

n∑
i=1

Ti∑
t=1

ξ2(xij)

λ2(xij)
− 2‖ξ‖2 < ‖ξ‖2 (4.3.1)

As a result, J is uniformly negative definite on Hs(0, T ) ∩ {λ|λ ≥ 0}.

5 Conclusion

In this paper, we summarize three popular technologies for the intensity estimation of Poisson
process. The smoothing kernel method has elegant results for one-dimension stationary data. The
RKHS method works by adjusting the kernel functions such that the representer’s theorem can be
applied. Similar method also works for data consists of multiple draws from some one-dimension
Poisson process. Two Bayesian approached based on the LGCP model and the SGCP model are also
discussed.
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