
15-853 Course Project

Generate Huffman Codes in parallel
Yichen Ruan (yichenr)

For code see GitHub: https://github.com/ycruan/ParallelHuffman

1. Introduction

In this project, we implement a parallel algorithm to generate Huffman codes for a set of

symbols. The algorithm is based on the work proposed by Ostadzadeh et al. (2006).

In section 2, we describe the algorithm itself together with its performance. In section 3,

we present some technique difficulties while implementing the algorithm and the

corresponding solutions. The experiment setting and results are discussed in section 4.

We summarize the project and address possible future work in section 5.

2. Algorithm

The algorithm can be divided into three phases: 1) CLGeneration: generate the length of

codeword for each symbol; 2) Length Count: given a list of codeword length, find the

indices of elements that have a different value compared to the next element; 3)

CWGeneration: generate the final codewords for each symbol. An outline of the algorithm

is shown in Fig. 1.

The algorithm requires O(n) work, where n is the number of symbols. The runtime is O(n)

for the worst case, while for most of time it can be as low as O(log(logn - 1)!).

Fig 1. Algorithm outline

https://github.com/ycruan/ParallelHuffman

2.1. CLGeneration

- Input: an array of sorted frequencies

- Output: an array of codeword length for each symbol

This is the key part of this algorithm. As is shown in Fig. 1, this phase keeps repeating

6 steps until all the codeword length is written to the output array:

- New iNodes: pick 2 nodes (can be leave nodes or internal nodes) with the smallest

frequencies, and merge them to create a new internal node (called iNode). The

frequency of the new node is set as the sum of the 2 picked nodes;

- Select: find all the leave nodes whose frequency are less than that of the new

iNode created in the previous step, copy them to a temporary array;

- Update Iterators and Merge: the leave nodes selected in the last step, together

with the iNodes that have not yet participated in merging before, are merged to

form a new array. However, the array has to have even number of elements. So

before doing the merge, we need to compare these nodes and keep only an even

number of them with the smallest frequencies;

- Meld: This step is to merge pair-wisely all consecutive nodes in the array

generated in the “merge” step;

- Update Leaves: If some node merged in the “meld” step have children, all the

leaves rooted at it are increased by one level. Thus, we need to update their

codeword lengths by 1.

In the implementation, we do not maintain an explicit tree structure. Instead, we will

keep 5 arrays: output array for codeword length, internal nodes, leave nodes, selected

leaves in step “select”, and merged leave and internal nodes in step “meld”. Each time

two nodes are merged, we need to update these arrays accordingly.

Easy to see this algorithm follows a bottom-up scheme. The correctness of this

method follows immediately from that of the original Huffman tree algorithm. After

each iteration, all nodes at or below the current level (i.e. nodes whose frequencies

are no greater than the current maximum frequency) are already up-to-date. Thus,

the number of iterations is bounded by the height of the Huffman tree. With precisely

n processors, all operations described above can be done in O(1) time – except the

“merge” operation (step 4) that have runtime O(loglogM(i)) (Kruskal, 1983), where

M(i) is the number of nodes to be merged in iteration i. Throughout the procedure,

precisely n-1 nodes are merged, i.e. ∑ 𝑀(𝑖)𝐿
𝑖=1 . Here L is the height of the underlying

Huffman tree, which is O(n) if the tree is unbalanced, and O(logn) otherwise.

As a result, work 𝑊 = 𝑂(𝑛)

For one-side tree, 𝑀(𝑖) = 𝑂(1), depth 𝑇 = 𝑂(𝑛)

For balanced tree

𝑇 = log log 2 + log log 22+. . .+ log log 2log𝑛 = 𝑂(log(log 𝑛 − 1)!)

2.2. Length Count

- Input: an array of codeword length for each symbol

- Output: reversed codeword length array, sorted array indicating the indices

whose codeword length are different with its successor.

As per the outline in Fig. 1, this part is comprised of 3 steps:

- Reverse: the codeword length generated in section 2.1 follows a bottom-top style,

however, the final Huffman codes are assigned in a top-bottom fashion. We

therefore need to first reverse the codeword length array. During the

implementation, the array is reversed in place with n/2 processors in constant

time.

- Set and pack output array: we assign a processor to each element of the reversed

array, find all the indices where the elements have different value with its

successor. Those indices correspond to different levels of the Huffman tree. The

array is then packed in O(n) work and O(logn) (Ostadzadeh, 2005) and output to

the next phase.

To summary, this phase requires O(n) work, and O(logn) time.

2.3. CWGeneration

- Input: reversed codeword length array, sorted array indicating the indices whose

codeword length are different with its successor.

- Output: an array of actual codewords

The algorithm in this phase is based on the following formula (Hashemian. 1995):

𝐶𝑖+1 = (𝐶𝑖 + 1) × 2𝑐𝑙𝑖+1−𝑐𝑙𝑖

where 𝐶𝑖 is the codeword for symbol i, 𝑐𝑙𝑖 is the length of 𝐶𝑖.

As is shown in Fig. 1, this phase iterates over 2 steps until all codewords are filled

- Generate codewords for the current level: given the current codeword (initialized

with the first longest codeword), generate all codewords with the same length by

adding the distance to that longest codeword in the reversed codeword array.

- Generate first codeword for the next level: find the symbol with one more

codeword length (level) as per the indicating array from phase 2. Generate the

codeword for this element using Hashemian’s formula.

Finally, the codeword array needs to be reversed once again to recover to the original

order. All the steps described above can be done in O(n) work and O(1) depth. The

number of iteration is again bounded by the height of the Huffman tree.

To conclude, all three phases takes O(n) work. If the underlying Huffman tree is balanced,

the depth is O(log(logn - 1)!) for “CLGeneration”, O(logn) for “Length Count” and O(logn)

for “CWGeneration”, thus is O(log(logn - 1)!) in total. However, for a one-side tree with

O(n) height, the depth is O(n) for “CLGeneration”, O(logn) for “Length Count” and O(n)

for “CWGeneration”, and O(n) in total.

The algorithm is guaranteed to generate some optimal Huffman codewords, but that may

be different from the result of the traditional Huffman algorithm. For instance, given input

frequencies [1,2,3,4,5,6,7], Fig. 2 and 3 show the generated Huffman tree for the

traditional algorithm and the parallel algorithm used in this project.

Fig 2. Huffman tree for traditional algorithm

Fig 3. Huffman tree for parallel algorithm

3. Technical details

We implemented the algorithm using Java. Each processor is replaced by a thread object.

Note that for all the three phases as shown in Fig. 1, the algorithm is parallelized only

inside each sub-step. The main thread, however, should be synchronized. Thus, we need

to force the main thread to wait for all sub-threads to finish before we can get into the

next step. There are no race conditions – threads typically write to different slots of the

array, and no data dependencies exist in the algorithm.

Nevertheless, there are some differences between our implementation and the algorithm

described above:

1) String generation. In the CWGeneration phase, the algorithm does not distinguish

string and binary integer. However, they are quite different in implementation. For

example, the string “00” and “0” both indicate integer 0b0, but they are totally

different as Huffman codes (although we know they can not appear at the same time

for prefix codes). What is more, it is hard to distinguish the equations “00” + “1” = “01”

and “0” + “1” = “1”. To fix it, we treat all codewords as integers. And do the arithmetic

calculations in section 2.3 using ordinary integer calculation. After all codewords are

correctly computed, we convert the integers to binaries with length equals that in the

CL array. The additional step can be done by n processors in O(1) work, thus does not

affect the total runtime.

2) Pick new nodes: in the “New iNode” step of the first phase, we need to pick out two

nodes with the smallest frequencies. We actually need two information: frequencies

of the two nodes and whether they are leaves or internal nodes. We could, of course,

copy 4 possible nodes (2 from leaves, 2 from internal nodes) into a temporary array,

and sort that with respect to frequencies. To do this we will need each node to have

an isleave filed indicating if it is a leave node. This idea is however inefficient since

that filed is only used in this specific step. To fix it, we create two temporary length-2

arrays, one stores frequencies in a non-decreasing order, another indicates identities

for each frequency element. For each iteration of the CLGeneration phase, we may

need a little bit more O(1) operations to maintain the two arrays, but we are saving a

lot of space and time to initialize and copy node structures.

4. Experiment

The experiment is done in the following physical setting:

Processor: 2 GHz Intel Core i5 (4 cores)

RAM: 8 GB 1867 MHz LPDDR3

OS: MacOS High Sierra 10.13.3

Java version: 1.8.0_111

Java VM version: 25.111-b14

Fig 4. Runtime of the algorithm for different number of symbols

Fig. 4 shows the runtime for frequency set [1,2,3…,n], (n=2,…,500) which should yield a

balanced Huffman tree. However, the runtime shown above is nearly linear, contradict with

the theoretic result O(log(logn - 1)!). This may be due to the following reasons:

1) Finite physical threads: the algorithm requires n processors to run simultaneously. But

we only have 4 physical threads available. What is more, the scheduling is controlled

by both the Java VM and the OS, thus is hard to predict the behavior. Context switch

can also be time consuming when there are hundreds of threads.

2) Booting latency: in reality, we cannot start all n threads at the same time. We typically

have to boot them inside a for loop. Thus, some threads may start later than others.

3) Initialization overhead: Java automatically fills claimed spaces with zero, which is safe,

but inefficient for performance purpose.

4) Java GC: which could be quite active considering we have so many thread objects.

0

500

1000

1500

2000

2500

0 100 200 300 400 500

R
u

nt
im

e
(m

s)

n

CLGeneration LengthCount CWGeneration total

5. Summary and Future work

In this project, we implement an algorithm that generate Huffman codewords in parallel.

The algorithm accepts a sorted array for frequencies of symbols, and emits an array for

the corresponding codewords. The algorithm has complexity of O(log(logn - 1)!) for a

balanced Huffman tree, and O(n) in the worst case. It is also efficient in terms of space

complexity, as it doesn’t explicitly maintain a tree structure. Experiment result shows that

the actual runtime is roughly O(n) in Java environment.

A possible future work is try to reduce the number of required processors. Currently the

work is the order of O(n), which as discussed in section 4, has potential influence on the

actual performance.

Reference

[1] Ostadzadeh, S. Arash, et al. "Parallel Construction of Huffman Codes." Advances in Systems, Computing Sciences

and Software Engineering. Springer, Dordrecht, 2006. 17-23.

[2] Kruskal, Clyde P. "Searching, merging, and sorting in parallel computation." IEEE Transactions on Computers 10

(1983): 942-946.

[3] Ostadzadeh, S. Arash, M. Amir Moulavi, and Zeinab Zeinalpour. "Massive concurrent deletion of keys in b*-tree."

International Conference on Parallel Processing and Applied Mathematics. Springer, Berlin, Heidelberg, 2005.

