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1 Your task

In this project, you will add features to the threading system of the educational operating system Pintos.
We will introduce these features briefly and provide more details in the reference material at the end of
this document.

1.1 Task 1: E�cient Alarm Clock

In Pintos, threads may call this function to put themselves to sleep:

/**
* This function suspends execution of the calling thread until time has
* advanced by at least x timer ticks. Unless the system is otherwise idle, the
* thread need not wake up after exactly x ticks. Just put it on the ready queue
* after they have waited for the right number of ticks. The argument to
* timer_sleep() is expressed in timer ticks, not in milliseconds or any another
* unit. There are TIMER_FREQ timer ticks per second, where TIMER_FREQ is a
* constant defined in devices/timer.h (spoiler: it’s 100 ticks per second).
*/
void timer_sleep (int64_t ticks);

timer_sleep() is useful for threads that operate in real-time (e.g. for blinking the cursor once per
second). The current implementation of timer_sleep() is ine�cient, because it calls thread_yield()
in a loop until enough time has passed. Your task is to re-implement timer_sleep() so that it executes
e�ciently without any “busy waiting”.

1.2 Task 2: Priority Scheduler

In Pintos, each thread has a priority value ranging from 0 (PRI MIN) to 63 (PRI MAX). However,
the current scheduler does not respect these priority values. You must modify the scheduler so that
higher-priority threads always run before lower-priority threads.

You must also modify the 3 Pintos synchronization primitives (lock, semaphore, condition variable),
so that these shared resources prefer higher-priority threads over lower-priority threads.

Additionally, you must implement priority donation for Pintos locks. When a high-priority thread
(A) has to wait to acquire a lock, which is already held by a lower-priority thread (B), we temporarily
raise B’s priority to A’s priority. The purpose of priority donation is to solve the priority inversion
problem. For example, a scheduler that did not donate priorities would choose medium-priority threads
instead of B. However, we want B to run first, so we can unblock A. Your implementation of priority
donation must handle 1) donations from multiple sources, 2) undoing donations when a lock is released,
and 3) nested/recursive donation.

A thread may set its own priority by calling thread_set_priority(int new_priority) and get its
own priority by calling thread_get_priority().

If a thread no longer has the highest “e↵ective priority” (it called thread_set_priority() with a
low value or it released a lock), it must immediately yield the CPU to the highest-priority thread.

1.3 Task 3: Multi-level Feedback Queue Scheduler (MLFQS)

In addition to the priority scheduler algorithm, you must implement a multi-level feedback queue sched-
uler algorithm, which is explained in detail in the reference material. The scheduler will either use
the priority scheduling algorithm or the MLFQS algorithm, depending on the value of the variable
“bool thread_mlfqs” (found in thread.c). This variable is toggled with --mlfqs command-line op-
tion to Pintos.
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2 Deliverables

Your project grade will be made up of 3 components:

• 20% Design Document and Design Review

• 70% Code

• 10% Final Report and Code Quality

2.1 Design Document (Due 3/15) and Design Review

Before you start writing any code for your project, you should create an implementation plan for each
feature and convince yourself that your design is correct. For this project, you must submit a design
document and attend a design review with your project TA.

2.1.1 Design Document Guidelines

Write your design document inside the doc/project1.md file, which has already been placed in your
group’s GitHub repository. You must use GitHub Flavored Markdown1 to format your design document.
You can preview your design document on GitHub’s web interface by going to the following address:
(replace group0 with your group number)

https://github.com/Berkeley-CS162/group0/blob/master/doc/project1.md

For each of the 3 tasks of this project, you must explain the following 4 aspects of your proposed
design. We suggest you create a section for each of the 3 project parts. Then, create subsections for
each of these 4 aspects.

1. Data structures and functions – Write down any struct definitions, global (or static) variables,
typedefs, or enumerations that you will be adding or modifying (if it already exists). These
definitions should be written with the C programming language, not with pseudocode. Include
a brief explanation the purpose of each modification. Your explanations should be as concise as
possible. Leave the full explanation to the following sections.

2. Algorithms – This is where you tell us how your code will work. Your description should be at a
level below the high level description of requirements given in the assignment. We have read the
project spec too, so it is unnecessary to repeat or rephrase what is stated here. On the other hand,
your description should be at a level above the code itself. Don’t give a line-by-line run-down of
what code you plan to write. Instead, you should try to convince us that your design satisfies all
the requirements, including any uncommon edge cases.

The length of this section depends on the complexity of the task and the complexity of your design.
Simple explanations are preferred, but if your explanation is vague or does not provide enough
details, you will be penalized. Here are some tips:

• For complex tasks, like the priority scheduler, we recommend that you split the task into
parts. Describe your algorithm for each part in a separate section. Start with the simplest
component and build up your design, one piece at a time. For example, your algorithms
section for the Priority Scheduler could have sections for:

– Choosing the next thread to run

– Acquiring a Lock

1
https://help.github.com/articles/basic-writing-and-formatting-syntax/
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– Releasing a Lock

– Computing the e↵ective priority

– Priority scheduling for semaphores and locks

– Priority scheduling for condition variables

– Changing thread’s priority

• Use `backticks` around variable names and function names. Use bold, italics, and other
Markdown styles to improve the readability of your design document.

• Lists can make your explanation more readable. If your paragraphs seem to lack coherency,
consider using a list.

• A good length for this section could be 1 paragraph for a simple task (Alarm Clock) or 2
screen pages for a complex task (Priority Scheduler). Make sure your explanation covers all
of the required features.

• We fully expect you to read a lot of Pintos code to prepare for the design document. You
won’t be able to write a good description of your algorithms if you don’t know any specifics
about Pintos.

3. Synchronization – Describe your strategy for preventing race conditions and convince us that it
works in all cases. Here are some tips for writing this section:

• This section should be structured as a list of all potential concurrent accesses to shared
resources. For each case, you should prove that your synchronization design ensures correct
behavior.

• An operating system kernel is a complex, multithreaded program, in which synchronizing
multiple threads can be di�cult. The best synchronization strategies are simple and easily
verifiable, which leaves little room for mistakes. If your synchronization strategy is di�cult
to explain, consider how you could simplify it.

• You should also aim to make your synchronization as e�cient as possible, in terms of time
and memory.

• Synchronization issues revolve around shared data. A good strategy for reasoning about
synchronization is to identify which pieces of data are accessed by multiple independent actors
(whether they are threads or interrupt handlers). Then, prove that the shared data always
remains consistent.

• Lists are a common cause of synchronization issues. Lists in Pintos are not thread-safe.

• Do not forget to consider memory deallocation as a synchronization issue. If you want to use
pointers to struct thread, then you need to prove those threads can’t exit and be deallocated
while you’re using them.

• If you create new functions, you should consider whether the function could be called in 2
threads at the same time. If your function access any global or static variables, you need to
show that there are no synchronization issues.

• Interrupt handlers cannot acquire locks. If you need to access a synchronized variable from
an interrupt handler, consider disabling interrupts.

• Locks do not prevent a thread from being preempted. Threads can be interrupted during a
critical section. Locks only guarantee that the critical section is only entered by one thread
at a time.

4. Rationale – Tell us why your design is better than the alternatives that you considered, or
point out any shortcomings it may have. You should think about whether your design is easy to
conceptualize, how much coding it will require, the time/space complexity of your algorithms, and
how easy/di�cult it would be to extend your design to accommodate additional features.

5



CS 162 Spring 2017 Project 1: Threads

2.1.2 Design Document Additional Questions

You must also answer these additional questions in your design document:

1. Consider a fully-functional correct implementation of this project, except for a single bug, which
exists in the sema_up() function. According to the project requirements, semaphores (and other
synchronization variables) must prefer higher-priority threads over lower-priority threads. However,
my implementation chooses the highest-priority thread based on the base priority rather than
the e↵ective priority. Essentially, priority donations are not taken into account when the
semaphore decides which thread to unblock. Please design a test case that can prove the
existence of this bug. Pintos test cases contain regular kernel-level code (variables, function
calls, if statements, etc) and can print out text. We can compare the expected output with the
actual output. If they do not match, then it proves that the implementation contains a bug. You
should provide a description of how the test works, as well as the expected output
and the actual output.

2. (This question uses the MLFQS scheduler.) Suppose threads A, B, and C have nice values 0, 1,
and 2. Each has a recent_cpu value of 0. Fill in the table below showing the scheduling decision
and the recent_cpu and priority values for each thread after each given number of timer ticks.
We can use R(A) and P(A) to denote the recent_cpu and priority values of thread A, for brevity.

timer ticks R(A) R(B) R(C) P(A) P(B) P(C) thread to run
0
4
8
12
16
20
24
28
32
36

Helpful tip: A GitHub-flavored Markdown version of this table is available at
https://gist.github.com/rogerhub/82395ea1f3ed64db6779.

3. Did any ambiguities in the scheduler specification make values in the table (in the previous ques-
tion) uncertain? If so, what rule did you use to resolve them?

2.1.3 Design Review

You will schedule a 20-25 minute design review with your project TA. During the design review, your
TA will ask you questions about your design for the project. You should be prepared to defend your
design and answer any clarifying questions your TA may have about your design document. The design
review is also a good opportunity to get to know your TA for those participation points.

2.1.4 Grading

The design document and design review will be graded together. You will receive a score out of 20 points,
which will reflect how convincing your design is, based on your explanation in your design document and
your answers during the design review. You must attend a design review in order to get these points.
We will try to accommodate any time conflicts, but you should let your TA know as soon as possible.
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2.2 Code (Due 3/3)

The code section of your grade will be determined by your autograder score. Pintos comes with a test
suite that you can run locally on your VM. We run the same tests on the autograder. The results of
these tests will determine your code score.

You can check your current grade for the code portion at any time by logging in to the course
autograder. Autograder results will also be emailed to you.

2.3 Final Report (Due 3/6) and Code Quality

After you complete the code for your project, you will submit a final report. Write your final report
inside the reports/project1.md file, which has already been placed in your group’s GitHub repository.
Please include the following in your final report:

• the changes you made since your initial design document and why you made them (feel free to
re-iterate what you discussed with your TA in the design review)

• a reflection on the project – what exactly did each member do? What went well, and what could
be improved?

You will also be graded on the quality of your code. This will be based on many factors:

• Does your code exhibit any major memory safety problems (especially regarding C strings), memory
leaks, poor error handling, or race conditions?

• Did you use consistent code style? Your code should blend in with the existing Pintos code. Check
your use of indentation, your spacing, and your naming conventions.

• Is your code simple and easy to understand?

• If you have very complex sections of code in your solution, did you add enough comments to explain
them?

• Did you leave commented-out code in your final submission?

• Did you copy-paste code instead of creating reusable functions?

• Did you re-implement linked list algorithms instead of using the provided list manipulation

• Are your lines of source code excessively long? (more than 100 characters)

• Is your Git commit history full of binary files? (don’t commit object files or log files, unless you
actually intend to)

7
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3 Reference

3.1 Pintos

Pintos is an educational operating system for the x86 architecture. It supports kernel threads, loading
and running user programs, and a file system, but it implements all of these in a very simple way. In
the Pintos projects, you and your project team will strengthen its support in all three of these areas.

Pintos could, theoretically, run on a regular IBM-compatible PC. Unfortunately, it is impractical
to supply every CS 162 student a dedicated PC for use with Pintos. Therefore, we will run Pintos
projects in a system simulator, that is, a program that simulates an x86 CPU and its peripheral devices
accurately enough that unmodified operating systems and software can run under it. Simulators also
give you the ability to inspect and debug an operating system while it runs. In class we will use the
Bochs and QEMU simulators.

3.1.1 Getting Started

Log in to the Vagrant Virtual Machine that you set up in hw0. You should already have a copy of
the Pintos skeleton code in ~/code/group on your VM. Since this is your first group project, you will
need to link this local git repository to your group’s GitHub repository. Go to the “Group” section of
the autograder2 and click the Octocat icon to go to your group’s GitHub repository. Copy the SSH
Clone URL (it should look like “git@github.com:Berkeley-CS162/groupX.git”) and use it in the
commands below:

$ cd ~/code/group
$ git remote add group YOUR_GITHUB_CLONE_URL

Once you have made some progress on your project, you can push your code to the autograder by
pushing to “group master”. This will use the “group” remote that we just set up. You don’t have to
do this right now, because you haven’t made any progress yet.

$ git commit -m "Added feature X to Pintos"
$ git push group master

To compile Pintos and run the Project 1 tests:

$ cd ~/code/group/pintos/src/threads
$ make
$ make check

The last command should run the Pintos test suite. These are the same tests that run on the
autograder. The skeleton code already passes some of these tests. By the end of the project, your code
should pass all of the tests.

3.1.2 Source Tree

threads/
The base Pintos kernel. Most of the modifications you will make for Project 1 will be in this directory.

userprog/
The user program loader. You will modify this for Project 2.

2
https://cs162.eecs.berkeley.edu/autograder/dashboard/group/
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vm/
We will not use this directory.

filesys/
The Pintos file system. You will use this file system in Project 2 and modify it in Project 3.

devices/
Source code for I/O device interfacing: keyboard, timer, disk, etc. You will modify the timer implemen-
tation in Project 1.

lib/
An implementation of a subset of the C standard library. The code in this directory is compiled into
both the Pintos kernel and user programs that run inside it. You can include header files from this
directory using the #include <...> notation. You should not have to modify this code.

lib/kernel/
Library functions that are only included in the Pintos kernel (not the user programs). It contains imple-
mentations of some data types that you should use in your kernel code: bitmaps, doubly linked lists, and
hash tables. In the kernel, headers in this directory can be included using the #include <...> notation.

lib/user/
Library functions that are included only in Pintos user programs (not the kernel). In user programs,
headers in this directory can be included using the #include <...> notation.

tests/
Tests for each project. You can add extra tests, but do not modify the given tests.

examples/
Example user programs that you can use in Project 2.

misc/, utils/
These files help you run Pintos. You should not need to interact with them directly.

Makefile.build
Describes how to build the kernel. Modify this file if you would like to add source code. For more
information, see Adding Source Files.

3.1.3 Building Pintos

This section describes the interesting files inside the threads/build directory.

threads/build/Makefile
A copy of Makefile.build. Don’t change this file, because your changes will be overwritten if you
make clean and re-compile. Make your changes to Makefile.build instead. For more information, see
Adding Source Files.

threads/build/kernel.o
Object file for the entire kernel. This is the result of linking object files compiled from each individual
kernel source file into a single object file. It contains debug information, so you can run GDB or back-
trace on it.

9
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threads/build/kernel.bin
Memory image of the kernel, that is, the exact bytes loaded into memory to run the Pintos kernel. This
is just kernel.o with debug information stripped out, which saves a lot of space, which in turn keeps the
kernel from bumping up against a 512 kB size limit imposed by the kernel loader’s design.

threads/build/loader.bin
Memory image for the kernel loader, a small chunk of code written in assembly language that reads the
kernel from disk into memory and starts it up. It is exactly 512 bytes long, a size fixed by the PC BIOS.

Subdirectories of build contain object files (.o) and dependency files (.d), both produced by the compiler.
The dependency files tell make which source files need to be recompiled when other source or header
files are changed.

3.1.4 Running Pintos

We’ve supplied a program for running Pintos in a simulator, called pintos, which should already be in
your PATH. (If not, add $HOME/.bin to your PATH.)

The Pintos kernel takes a list of arguments, which tell the kernel what actions to perform. These
actions are specified in the file threads/init.c on line 309 and look something like this.

static const struct action actions[] =
{

{"run", 2, run_task},
#ifdef FILESYS

{"ls", 1, fsutil_ls},
{"cat", 2, fsutil_cat},
{"rm", 2, fsutil_rm},
{"extract", 1, fsutil_extract},
{"append", 2, fsutil_append},

#endif
{NULL, 0, NULL},

};

The preprocessor macro FILESYS was not defined when we built Pintos earlier (it will be enabled in
Project 2 and Project 3). So, we can only take one action: run. This run action will run a test specified
by the next command-line argument. The number next to each action’s name tells Pintos how many
arguments there are (including the name of the action itself). For example, the run action’s arguments
are “run <test_name>”. The tests that you can run are the file names in tests/threads (without the
file extensions).

Let’s try it out! First cd into the threads directory. Then run “pintos run alarm-multiple”,
which passes the arguments “run alarm-multiple” to the Pintos kernel. In these arguments, run
instructs the kernel to run a test named alarm-multiple.

3.1.5 Debugging Pintos

The pintos program o↵ers several options for configuring the simulator or the virtual hardware. If you
specify any options, they must precede the commands passed to the Pintos kernel and be separated from
them by --, so that the whole command looks like “pintos [option...] -- [argument...]” Invoke
pintos without any arguments to see a list of available options.

One of the most important options is --gdb which will allow you to use gdb to debug the code you’ve
written. For example, to run the debugger for the alarm-multiple test we would perform the following
steps:
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• cd into ~/code/group/pintos/src/threads

• Run pintos with the debugger option “pintos --gdb -- run alarm-multiple”. At this point,
Pintos should say that it is “Waiting for gdb connection on port 1234”.

• Open a new terminal and SSH into the VM

• cd into ~/code/group/pintos/src/threads/build

• Open cgdb by running “pintos-gdb kernel.o”. The pintos-gdb script loads cgdb with many
useful GDB macros that will help you debug Pintos.

• In GDB, attach to Pintos by running “target remote localhost:1234”.
On your VM, you should be able to use “debugpintos” or “deb” as a shortcut to performing this
step.

• Set a breakpoint at an interesting point in the program. Try “break thread_init”.

• Use “continue” or “c” to start Pintos.

When you are working with the Pintos test suite, you should not start Pintos by constructing the
command-line arguments manually. Many of the tests in the test suite require specific arguments to be
passed to the simulator or to Pintos itself. You should read the next section for information about how
to debug Pintos tests.

3.1.6 Debugging Pintos Tests

To debug Pintos test cases, you should first run the “make check” command, then copy the command-
line arguments for the test that you are debugging, and then add --gdb to it. Then, run
pintos-gdb like you did in the previous section.

Try it out yourself. SSH into your VM and cd to ~/code/group/pintos/src/threads. Then, run:

$ make clean
$ make
$ make check

Pay attention to the output of “make check”. You should see lines like these in the output:

pintos -v -k -T 60 --bochs -- -q run alarm-multiple < /dev/null 2> tests/threads...
perl -I../.. ../../tests/threads/alarm-multiple.ck tests/threads/alarm-multiple te...
pass tests/threads/alarm-multiple

Here is an explanation:

• The first line runs the pintos script to start the Pintos kernel in a simulator, like we did before. The
command uses the -v -k -T 60 --bochs options for the simulator, and the -q run alarm-multiple
arguments for the Pintos kernel. Then, we use the <, 2>, and > symbols to redirect standard input,
standard error, and standard output to files.

• The second line uses the Perl programming language to run ../../tests/threads/alarm-multiple.ck
to verify the output of Pintos kernel.

• Using the Perl script from line 2, the build system can tell if this test passed or failed. If the test
passed, we will see “pass”, followed by the test name. Otherwise, we will see “fail”, followed by
the test name, and then more details about the test failure.
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In order to debug this test, you should copy the command on the first line. Remove the input/output
redirection (everything after the “< /dev/null”), because we want to see the output on the terminal
when we’re debugging. Finally, add --gdb to the simulator options. (The --gdb must be before the
double dashes, --, because everything after the double dashes is passed to the kernel, not the simulator.)

Your final command should look like:

$ pintos --gdb -v -k -T 60 --bochs -- -q run alarm-multiple

Run this command. Then, open a new terminal and cd to ~/code/group/pintos/src/threads/build
and run “pintos-gdb kernel.o” and type “debugpintos” like you did in the previous section.

• You do not need to quit GDB after each run of the Pintos kernel. Just start pintos again and type
debugpintos into GDB to attach to a new instance of Pintos. (If you re-compile your code, you
must quit GDB and start it again, so it can load the new symbols from kernel.o.)

• Take some time to learn all the GDB shortcuts and how to use the CGDB interface. You may also
be interested in looking at the Pintos GDB macros found in ~/.bin/gdb-macros.

3.1.7 Debugging Page Faults

If you encounter a page fault during a test, you should use the method in the previous section to debug
Pintos with GDB. If you use pintos-gdb instead of plain gdb or cgdb, you should get a backtrace of
the page fault when it occurs:

pintos-debug: a page fault occurred in kernel mode
#0 test_alarm_negative () at ../../tests/threads/alarm-negative.c:14
#1 0xc000ef4c in ?? ()
#2 0xc0020165 in start () at ../../threads/start.S:180

If you want to inspect the original environment where the page fault occurred, you can use this trick:

(gdb) debugpintos
(gdb) continue

Now, wait until the kernel encounters the page fault. Then run these commands:

(gdb) set $eip = ((void**) $esp)[1]
(gdb) up
(gdb) down

You should now be able to inspect the local variables and the stack trace when the page fault occurred.

3.1.8 Debugging Kernel Panics

The Pintos source code contains a lot of “ASSERT (condition)” statements. When the condition of
an assert statement evaluates to false, the kernel will panic and print out some debugging information.
Usually, you will get a line of output that looks like this:

Call stack: 0xc0106eff 0xc01102fb 0xc010dc22 0xc010cf67 0xc0102319
0xc010325a 0x804812c 0x8048a96 0x8048ac8.

This is a list of instruction addresses, each of which corresponds to a frame on the kernel stack when
the panic occurred. You can decode this information into a helpful stack trace by using the backtrace
utility that is included in your VM.
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$ cd ~/code/group/pintos/src/threads/build/
$ backtrace kernel.o 0xc0106eff 0xc01102fb 0xc010dc22 0xc010cf67 0xc0102319 ...

If you run your tests using “make check”, the testing framework will run backtrace automatically
when it detects a kernel panic.

To debug a kernel panic with GDB, you can usually just set a breakpoint at the inner-most line of
code inside the stack trace. However, if your kernel panic occurs inside a function that is called many
times, you may need to type continue a bunch of times before you reach the point in the test where
the kernel panic occurs.

One trick you can use to improve this technique is to transform the code itself. For example, if you
have an assert statement that looks like:

ASSERT (is_thread (next));

You can transform it into this:

if (!is_thread(next)) {
barrier(); // Set a breakpoint HERE!

}
ASSERT (is_thread (next));

Then, set a breakpoint at the line containing barrier(). You can use any line of code instead of
barrier(), but you must ensure that the compiler cannot reorder or eliminate that line of code. For
example, if you created a dummy variable “int hello = 1;” instead of using barrier(), the compiler
could decide that line of code wasn’t needed and omit instructions for it! If you get a compile error while
using barrier(), make sure you’ve included the synch.h header file.

You can also use GDB’s conditional breakpoints, but if the assertion makes use of C macros, GDB
might not understand what you mean.

3.1.9 Adding Source Files

This project will not require you to add any new source code files. In the event you want to add your
own .c source code, open Makefile.build in your Pintos root directory and add the file to either the
threads_SRC or devices_SRC variable depending on where the files are located.

If you want to add your own tests, place the test files in tests/threads/. Then, edit
tests/threads/Make.tests to incorporate your tests into the build system.

Make sure to re-run make from the threads directory after adding your files. If your new file doesn’t
get compiled, run make clean and try again. Note that adding new .h files will not require any changes
to makefiles.

3.1.10 Why Pintos?

Why the name “Pintos”? First, like nachos (the operating system previously used in CS162), pinto
beans are a common Mexican food. Second, Pintos is small and a “pint” is a small amount. Third, like
drivers of the eponymous car, students are likely to have trouble with blow-ups.

3.2 Threads

3.2.1 Understanding Threads

The first step is to read and understand the code for the thread system. Pintos already
implements thread creation and thread completion, a simple scheduler to switch between threads, and
synchronization primitives (semaphores, locks, condition variables, and optimization barriers).
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Some of this code might seem slightly mysterious. You can read through parts of the source code to
see what’s going on. If you like, you can add calls to printf() almost anywhere, then recompile and run
to see what happens and in what order. You can also run the kernel in a debugger and set breakpoints
at interesting spots, step through code and examine data, and so on.

When a thread is created, the creator specifies a function for the thread to run, as one of the
arguments to thread_create(). The first time the thread is scheduled and runs, it starts executing
from the beginning of that function. When the function returns, the thread terminates. Each thread,
therefore, acts like a mini-program running inside Pintos, with the function passed to thread_create()
acting like main().

At any given time, exactly one thread runs and the rest become inactive. The scheduler decides
which thread to run next. (If no thread is ready to run, then the special “idle” thread runs.)

The mechanics of a context switch are in threads/switch.S, which is x86 assembly code. It saves
the state of the currently running thread and restores the state of the next thread onto the CPU.

Using GDB, try tracing through a context switch to see what happens. You can set a breakpoint
on schedule() to start out, and then single-step from there (use “step” instead of “next”). Be sure
to keep track of each thread’s address and state, and what procedures are on the call stack for each
thread (try “backtrace”). You will notice that when one thread calls switch_threads(), another
thread starts running, and the first thing the new thread does is to return from switch_threads(). You
will understand the thread system once you understand why and how the switch_threads() that gets
called is di↵erent from the switch_threads() that returns.

3.2.2 The Thread Struct

Each thread struct represents either a kernel thread or a user process. In each of the 3 projects, you
will have to add your own members to the thread struct. You may also need to change or delete the
definitions of existing members.

Every thread struct occupies the beginning of its own 4KiB page of memory. The rest of the page is
used for the thread’s stack, which grows downward from the end of the page. It looks like this:

4 kB +---------------------------------+
| kernel stack |
| | |
| | |
| V |
| grows downward |
| |
| |
| |
| |
| |
| |

sizeof (struct thread) +---------------------------------+
| magic |
| : |
| : |
| status |
| tid |

0 kB +---------------------------------+

This layout has two consequences. First, struct thread must not be allowed to grow too big. If it
does, then there will not be enough room for the kernel stack. The base struct thread is only a few bytes
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in size. It probably should stay well under 1 kB.
Second, kernel stacks must not be allowed to grow too large. If a stack overflows, it will corrupt

the thread state. Thus, kernel functions should not allocate large structures or arrays as non-static
local variables. Use dynamic allocation with malloc() or palloc_get_page() instead. See the Memory
Allocation section for more details.

• Member of struct thread: tid_t tid
The thread’s thread identifier or tid. Every thread must have a tid that is unique over the entire
lifetime of the kernel. By default, tid_t is a typedef for int and each new thread receives the
numerically next higher tid, starting from 1 for the initial process.

• Member of struct thread: enum thread_status status
The thread’s state, one of the following:

– Thread State: THREAD_RUNNING
The thread is running. Exactly one thread is running at a given time. thread_current()
returns the running thread.

– Thread State: THREAD_READY
The thread is ready to run, but it’s not running right now. The thread could be selected to
run the next time the scheduler is invoked. Ready threads are kept in a doubly linked list
called ready_list.

– Thread State: THREAD_BLOCKED
The thread is waiting for something, e.g. a lock to become available, an interrupt to be
invoked. The thread won’t be scheduled again until it transitions to the THREAD_READY state
with a call to thread_unblock(). This is most conveniently done indirectly, using one of the
Pintos synchronization primitives that block and unblock threads automatically.

– Thread State: THREAD_DYING
The thread has exited and will be destroyed by the scheduler after switching to the next
thread.

• Member of struct thread: char name[16]
The thread’s name as a string, or at least the first few characters of it.

• Member of struct thread: uint8_t *stack
Every thread has its own stack to keep track of its state. When the thread is running, the CPU’s
stack pointer register tracks the top of the stack and this member is unused. But when the CPU
switches to another thread, this member saves the thread’s stack pointer. No other members are
needed to save the thread’s registers, because the other registers that must be saved are saved on
the stack.

When an interrupt occurs, whether in the kernel or a user program, an “struct intr_frame” is
pushed onto the stack. When the interrupt occurs in a user program, the “struct intr_frame”
is always at the very top of the page.

• Member of struct thread: int priority
A thread priority, ranging from PRI_MIN (0) to PRI_MAX (63). Lower numbers correspond to lower
priorities, so that priority 0 is the lowest priority and priority 63 is the highest. Pintos currently
ignores these priorities, but you will implement priority scheduling in this project.

• Member of struct thread: struct list_elem allelem
This “list element” is used to link the thread into the list of all threads. Each thread is inserted
into this list when it is created and removed when it exits. The thread_foreach() function should
be used to iterate over all threads.
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• Member of struct thread: struct list_elem elem
A “list element” used to put the thread into doubly linked lists, either ready_list (the list of
threads ready to run) or a list of threads waiting on a semaphore in sema_down(). It can do double
duty because a thread waiting on a semaphore is not ready, and vice versa.

• Member of struct thread: uint32_t *pagedir
(Only used in Project 2 and later.) The page table for the process, if this is a user process.

• Member of struct thread: unsigned magic
Always set to THREAD_MAGIC, which is just an arbitrary number defined in threads/thread.c,
and used to detect stack overflow. thread_current() checks that the magic member of the
running thread’s struct thread is set to THREAD_MAGIC. Stack overflow tends to change this
value, triggering the assertion. For greatest benefit, as you add members to struct thread, leave
magic at the end.

3.2.3 Thread Functions

threads/thread.c implements several public functions for thread support. Let’s take a look at the
most useful ones:

• Function: void thread_init (void)
Called by main() to initialize the thread system. Its main purpose is to create a struct thread
for Pintos’s initial thread. This is possible because the Pintos loader puts the initial thread’s stack
at the top of a page, in the same position as any other Pintos thread.

Before thread_init() runs, thread_current() will fail because the running thread’s magic
value is incorrect. Lots of functions call thread_current() directly or indirectly, including
lock_acquire() for locking a lock, so thread_init() is called early in Pintos initialization.

• Function: void thread_start (void)
Called by main() to start the scheduler. Creates the idle thread, that is, the thread that is sched-
uled when no other thread is ready. Then enables interrupts, which as a side e↵ect enables the
scheduler because the scheduler runs on return from the timer interrupt, using intr_yield_on_return().

• Function: void thread_tick (void)
Called by the timer interrupt at each timer tick. It keeps track of thread statistics and triggers
the scheduler when a time slice expires.

• Function: void thread_print_stats (void)
Called during Pintos shutdown to print thread statistics.

• Function: tid_t thread_create (const char *name, int priority, thread_func *func, void *aux)
Creates and starts a new thread named name with the given priority, returning the new thread’s
tid. The thread executes func, passing aux as the function’s single argument.

thread_create() allocates a page for the thread’s thread struct and stack and initializes its
members, then it sets up a set of fake stack frames for it. The thread is initialized in the blocked
state, then unblocked just before returning, which allows the new thread to be scheduled.

– Type: void thread_func (void *aux)
This is the type of the function passed to thread_create(), whose aux argument is passed
along as the function’s argument.

• Function: void thread_block (void)
Transitions the running thread from the running state to the blocked state. The thread will not
run again until thread_unblock() is called on it, so you’d better have some way arranged for
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that to happen. Because thread_block() is so low-level, you should prefer to use one of the
synchronization primitives instead.

• Function: void thread_unblock (struct thread *thread)
Transitions thread, which must be in the blocked state, to the ready state, allowing it to resume
running. This is called when the event that the thread is waiting for occurs, e.g. when the lock
that the thread is waiting on becomes available.

• Function: struct thread *thread_current (void)
Returns the running thread.

• Function: tid_t thread_tid (void)
Returns the running thread’s thread id. Equivalent to thread_current ()->tid.

• Function: const char *thread_name (void)
Returns the running thread’s name. Equivalent to thread_current ()->name.

• Function: void thread_exit (void) NO_RETURN
Causes the current thread to exit. Never returns, hence NO_RETURN.

• Function: void thread_yield (void)
Yields the CPU to the scheduler, which picks a new thread to run. The new thread might be
the current thread, so you can’t depend on this function to keep this thread from running for any
particular length of time.

• Function: void thread_foreach (thread_action_func *action, void *aux)
Iterates over all threads t and invokes action(t, aux) on each. action must refer to a function
that matches the signature given by thread_action_func():

– Type: void thread_action_func (struct thread *thread, void *aux)
Performs some action on a thread, given aux.

• Function: int thread_get_priority (void)
Function: void thread_set_priority (int new_priority)
Stub to set and get thread priority.

• Function: int thread_get_nice (void)
Function: void thread_set_nice (int new_nice)
Function: int thread_get_recent_cpu (void)
Function: int thread_get_load_avg (void)
Stubs for the advanced MLFQS scheduler.

3.2.4 Thread Switching

schedule() is responsible for switching threads. It is internal to threads/thread.c and called only by
the three public thread functions that need to switch threads: thread_block(), thread_exit(), and
thread_yield(). Before any of these functions call schedule(), they disable interrupts (or ensure that
they are already disabled) and then change the running thread’s state to something other than running.

schedule() is short but tricky. It records the current thread in local variable cur, determines
the next thread to run as local variable next (by calling next_thread_to_run()), and then calls
switch_threads() to do the actual thread switch. The thread we switched to was also running in-
side switch_threads(), as are all the threads not currently running, so the new thread now returns out
of switch_threads(), returning the previously running thread.
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switch_threads() is an assembly language routine in threads/switch.S. It saves registers on the
stack, saves the CPU’s current stack pointer in the current struct thread’s stack member, restores
the new thread’s stack into the CPU’s stack pointer, restores registers from the stack, and returns.

The rest of the scheduler is implemented in thread_schedule_tail(). It marks the new thread
as running. If the thread we just switched from is in the dying state, then it also frees the page that
contained the dying thread’s struct thread and stack. These couldn’t be freed prior to the thread
switch because the switch needed to use it.

Running a thread for the first time is a special case. When thread_create() creates a new thread,
it goes through a fair amount of trouble to get it started properly. In particular, the new thread hasn’t
started running yet, so there’s no way for it to be running inside switch_threads() as the scheduler
expects. To solve the problem, thread_create() creates some fake stack frames in the new thread’s
stack:

• The topmost fake stack frame is for switch_threads(), represented by struct switch_threads_frame.
The important part of this frame is its eip member, the return address. We point eip to
switch_entry(), indicating it to be the function that called switch_entry().

• The next fake stack frame is for switch_entry(), an assembly language routine in threads/switch.S
that adjusts the stack pointer, calls thread_schedule_tail() (this special case is why
thread_schedule_tail() is separate from schedule()), and returns. We fill in its stack frame
so that it returns into kernel_thread(), a function in threads/thread.c.

• The final stack frame is for kernel_thread(), which enables interrupts and calls the thread’s
function (the function passed to thread_create()). If the thread’s function returns, it calls
thread_exit() to terminate the thread.

3.3 Synchronization

If sharing of resources between threads is not handled in a careful, controlled fashion, the result is usually
a big mess. This is especially the case in operating system kernels, where faulty sharing can crash the
entire machine. Pintos provides several synchronization primitives to help out.

3.3.1 Disabling Interrupts

The crudest way to do synchronization is to disable interrupts, that is, to temporarily prevent the CPU
from responding to interrupts. If interrupts are o↵, no other thread will preempt the running thread,
because thread preemption is driven by the timer interrupt. If interrupts are on, as they normally are,
then the running thread may be preempted by another at any time, whether between two C statements
or even within the execution of one.

Incidentally, this means that Pintos is a “preemptible kernel,” that is, kernel threads can be pre-
empted at any time. Traditional Unix systems are “nonpreemptible,” that is, kernel threads can only
be preempted at points where they explicitly call into the scheduler. (User programs can be preempted
at any time in both models.) As you might imagine, preemptible kernels require more explicit synchro-
nization.

You should have little need to set the interrupt state directly. Most of the time you should use
the other synchronization primitives described in the following sections. The main reason to disable
interrupts is to synchronize kernel threads with external interrupt handlers, which cannot sleep and thus
cannot use most other forms of synchronization.

Some external interrupts cannot be postponed, even by disabling interrupts. These interrupts, called
non-maskable interrupts (NMIs), are supposed to be used only in emergencies, e.g. when the com-
puter is on fire. Pintos does not handle non-maskable interrupts.

Types and functions for disabling and enabling interrupts are in threads/interrupt.h.
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• Type: enum intr_level
One of INTR_OFF or INTR_ON, denoting that interrupts are disabled or enabled, respectively.

• Function: enum intr_level intr_get_level (void)
Returns the current interrupt state.

• Function: enum intr_level intr_set_level (enum intr_level level)
Turns interrupts on or o↵ according to level. Returns the previous interrupt state.

• Function: enum intr_level intr_enable (void)
Turns interrupts on. Returns the previous interrupt state.

• Function: enum intr_level intr_disable (void)
Turns interrupts o↵. Returns the previous interrupt state.

This project only requires accessing a little bit of thread state from interrupt handlers. For the
alarm clock, the timer interrupt needs to wake up sleeping threads. In the advanced scheduler, the timer
interrupt needs to access a few global and per-thread variables. When you access these variables from
kernel threads, you will need to disable interrupts to prevent the timer interrupt from interfering.

When you do turn o↵ interrupts, take care to do so for the least amount of code possible, or you can
end up losing important things such as timer ticks or input events. Turning o↵ interrupts also increases
the interrupt handling latency, which can make a machine feel sluggish if taken too far.

The synchronization primitives themselves in synch.c are implemented by disabling interrupts. You
may need to increase the amount of code that runs with interrupts disabled here, but you should still
try to keep it to a minimum.

Disabling interrupts can be useful for debugging, if you want to make sure that a section of code is
not interrupted. You should remove debugging code before turning in your project. (Don’t just comment
it out, because that can make the code di�cult to read.)

There should be no busy waiting in your submission. A tight loop that calls thread_yield() is one
form of busy waiting.

3.3.2 Semaphores

A semaphore is a nonnegative integer together with two operators that manipulate it atomically, which
are:

• “Down” or “P”: wait for the value to become positive, then decrement it.

• “Up” or “V”: increment the value (and wake up one waiting thread, if any).

A semaphore initialized to 0 may be used to wait for an event that will happen exactly once. For
example, suppose thread A starts another thread B and wants to wait for B to signal that some activity
is complete. A can create a semaphore initialized to 0, pass it to B as it starts it, and then “down” the
semaphore. When B finishes its activity, it “ups” the semaphore. This works regardless of whether A
“downs” the semaphore or B “ups” it first.

A semaphore initialized to 1 is typically used for controlling access to a resource. Before a block of
code starts using the resource, it “downs” the semaphore, then after it is done with the resource it “ups”
the resource. In such a case a lock, described below, may be more appropriate.

Semaphores can also be initialized to 0 or values larger than 1.
Pintos’ semaphore type and operations are declared in threads/synch.h.

• Type: struct semaphore
Represents a semaphore.
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• Function: void sema_init (struct semaphore *sema, unsigned value)
Initializes sema as a new semaphore with the given initial value.

• Function: void sema_down (struct semaphore *sema)
Executes the “down” or “P” operation on sema, waiting for its value to become positive and then
decrementing it by one.

• Function: bool sema_try_down (struct semaphore *sema)
Tries to execute the “down” or “P” operation on sema, without waiting. Returns true if sema
was successfully decremented, or false if it was already zero and thus could not be decremented
without waiting. Calling this function in a tight loop wastes CPU time, so use sema_down or find
a di↵erent approach instead.

• Function: void sema_up (struct semaphore *sema)
Executes the “up” or “V” operation on sema, incrementing its value. If any threads are waiting
on sema, wakes one of them up.

Unlike most synchronization primitives, sema_up may be called inside an external interrupt han-
dler.

Semaphores are internally built out of disabling interrupt and thread blocking and unblocking
(thread_block and thread_unblock). Each semaphore maintains a list of waiting threads, using the
linked list implementation in lib/kernel/list.c.

3.3.3 Locks

A lock is like a semaphore with an initial value of 1. A lock’s equivalent of “up” is called “release”, and
the “down” operation is called “acquire”.

Compared to a semaphore, a lock has one added restriction: only the thread that acquires a lock,
called the lock’s “owner”, is allowed to release it. If this restriction is a problem, it’s a good sign that a
semaphore should be used, instead of a lock.

Locks in Pintos are not “recursive,” that is, it is an error for the thread currently holding a lock to
try to acquire that lock.

Lock types and functions are declared in threads/synch.h.

• Type: struct lock
Represents a lock.

• Function: void lock_init (struct lock *lock)
Initializes lock as a new lock. The lock is not initially owned by any thread.

• Function: void lock_acquire (struct lock *lock)
Acquires lock for the current thread, first waiting for any current owner to release it if necessary.

• Function: bool lock_try_acquire (struct lock *lock)
Tries to acquire lock for use by the current thread, without waiting. Returns true if successful,
false if the lock is already owned. Calling this function in a tight loop is a bad idea because it
wastes CPU time, so use lock_acquire instead.

• Function: void lock_release (struct lock *lock)
Releases lock, which the current thread must own.

• Function: bool lock_held_by_current_thread (const struct lock *lock)
Returns true if the running thread owns lock, false otherwise. There is no function to test whether
an arbitrary thread owns a lock, because the answer could change before the caller could act on it.
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3.3.4 Monitors

A monitor is a higher-level form of synchronization than a semaphore or a lock. A monitor consists of
data being synchronized, plus a lock, called the monitor lock, and one or more condition variables.
Before it accesses the protected data, a thread first acquires the monitor lock. It is then said to be “in
the monitor”. While in the monitor, the thread has control over all the protected data, which it may
freely examine or modify. When access to the protected data is complete, it releases the monitor lock.

Condition variables allow code in the monitor to wait for a condition to become true. Each condition
variable is associated with an abstract condition, e.g. “some data has arrived for processing” or “over
10 seconds has passed since the user’s last keystroke”. When code in the monitor needs to wait for a
condition to become true, it “waits” on the associated condition variable, which releases the lock and
waits for the condition to be signaled. If, on the other hand, it has caused one of these conditions to
become true, it “signals” the condition to wake up one waiter, or “broadcasts” the condition to wake all
of them.

The theoretical framework for monitors was laid out by C. A. R. Hoare. Their practical usage was
later elaborated in a paper on the Mesa operating system.

Condition variable types and functions are declared in threads/synch.h.

• Type: struct condition
Represents a condition variable.

• Function: void cond_init (struct condition *cond)
Initializes cond as a new condition variable.

• Function: void cond_wait (struct condition *cond, struct lock *lock)
Atomically releases lock (the monitor lock) and waits for cond to be signaled by some other piece
of code. After cond is signaled, reacquires lock before returning. lock must be held before calling
this function.

Sending a signal and waking up from a wait are not an atomic operation. Thus, typically
cond_wait’s caller must recheck the condition after the wait completes and, if necessary, wait
again.

• Function: void cond_signal (struct condition *cond, struct lock *lock)
If any threads are waiting on cond (protected by monitor lock lock), then this function wakes up
one of them. If no threads are waiting, returns without performing any action. lock must be held
before calling this function.

• Function: void cond_broadcast (struct condition *cond, struct lock *lock)
Wakes up all threads, if any, waiting on cond (protected by monitor lock lock). lock must be
held before calling this function.

3.3.5 Optimization Barriers

An optimization barrier is a special statement that prevents the compiler from making assumptions
about the state of memory across the barrier. The compiler will not reorder reads or writes of variables
across the barrier or assume that a variable’s value is unmodified across the barrier, except for local
variables whose address is never taken. In Pintos, threads/synch.h defines the barrier() macro as an
optimization barrier.

One reason to use an optimization barrier is when data can change asynchronously, without the
compiler’s knowledge, e.g. by another thread or an interrupt handler. The too_many_loops function in
devices/timer.c is an example. This function starts out by busy-waiting in a loop until a timer tick
occurs:
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/* Wait for a timer tick. */
int64_t start = ticks;
while (ticks == start)
barrier ();

Without an optimization barrier in the loop, the compiler could conclude that the loop would never
terminate, because start and ticks start out equal and the loop itself never changes them. It could
then “optimize” the function into an infinite loop, which would definitely be undesirable.

Optimization barriers can be used to avoid other compiler optimizations. The busy_wait function,
also in devices/timer.c, is an example. It contains this loop:

while (loops-- > 0)
barrier ();

The goal of this loop is to busy-wait by counting loops down from its original value to 0. Without the
barrier, the compiler could delete the loop entirely, because it produces no useful output and has no side
e↵ects. The barrier forces the compiler to pretend that the loop body has an important e↵ect.

Finally, optimization barriers can be used to force the ordering of memory reads or writes. For
example, suppose we add a “feature” that, whenever a timer interrupt occurs, the character in global
variable timer_put_char is printed on the console, but only if global Boolean variable timer_do_put is
true. The best way to set up x to be printed is then to use an optimization barrier, like this:

timer_put_char = ’x’;
barrier ();
timer_do_put = true;

Without the barrier, the code is buggy because the compiler is free to reorder operations when it
doesn’t see a reason to keep them in the same order. In this case, the compiler doesn’t know that the
order of assignments is important, so its optimizer is permitted to exchange their order. There’s no
telling whether it will actually do this, and it is possible that passing the compiler di↵erent optimization
flags or using a di↵erent version of the compiler will produce di↵erent behavior.

Another solution is to disable interrupts around the assignments. This does not prevent reordering,
but it prevents the interrupt handler from intervening between the assignments. It also has the extra
runtime cost of disabling and re-enabling interrupts:

enum intr_level old_level = intr_disable ();
timer_put_char = ’x’;
timer_do_put = true;
intr_set_level (old_level);

A second solution is to mark the declarations of timer_put_char and timer_do_put as volatile.
This keyword tells the compiler that the variables are externally observable and restricts its latitude
for optimization. However, the semantics of volatile are not well-defined, so it is not a good general
solution. The base Pintos code does not use volatile at all.

The following is not a solution, because locks neither prevent interrupts nor prevent the compiler
from reordering the code within the region where the lock is held:

lock_acquire (&timer_lock); /* INCORRECT CODE */
timer_put_char = ’x’;
timer_do_put = true;
lock_release (&timer_lock);
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The compiler treats invocation of any function defined externally, that is, in another source file, as
a limited form of optimization barrier. Specifically, the compiler assumes that any externally defined
function may access any statically or dynamically allocated data and any local variable whose address
is taken. This often means that explicit barriers can be omitted. It is one reason that Pintos contains
few explicit barriers.

A function defined in the same source file, or in a header included by the source file, cannot be
relied upon as a optimization barrier. This applies even to invocation of a function before its definition,
because the compiler may read and parse the entire source file before performing optimization.

3.4 Memory Allocation

Pintos contains two memory allocators, one that allocates memory in units of a page, and one that can
allocate blocks of any size.

3.4.1 Page Allocator

The page allocator declared in threads/palloc.h allocates memory in units of a page. It is most often
used to allocate memory one page at a time, but it can also allocate multiple contiguous pages at once.

The page allocator divides the memory it allocates into two pools, called the kernel and user pools.
By default, each pool gets half of system memory above 1 MiB, but the division can be changed with
the -ul kernel command line option. An allocation request draws from one pool or the other. If one
pool becomes empty, the other may still have free pages. The user pool should be used for allocating
memory for user processes and the kernel pool for all other allocations. This distinction will only become
important starting with Project 2. Until then, all allocations should be made from the kernel pool.

Each pool’s usage is tracked with a bitmap, one bit per page in the pool. A request to allocate n
pages scans the bitmap for n consecutive bits set to false, indicating that those pages are free, and then
sets those bits to true to mark them as used. This is a “first fit” allocation strategy.

The page allocator is subject to fragmentation. That is, it may not be possible to allocate n contiguous
pages even though n or more pages are free, because the free pages are separated by used pages. In fact,
in pathological cases it may be impossible to allocate 2 contiguous pages even though half of the pool’s
pages are free. Single-page requests can’t fail due to fragmentation, so requests for multiple contiguous
pages should be limited as much as possible.

Pages may not be allocated from interrupt context, but they may be freed.
When a page is freed, all of its bytes are cleared to 0xcc, as a debugging aid.
Page allocator types and functions are described below.

• Function: void * palloc_get_page (enum palloc_flags flags)
Function: void * palloc_get_multiple (enum palloc_flags flags, size_t page_cnt)
Obtains and returns one page, or page_cnt contiguous pages, respectively. Returns a null pointer
if the pages cannot be allocated.

The flags argument may be any combination of the following flags:

– Page Allocator Flag: PAL_ASSERT
If the pages cannot be allocated, panic the kernel. This is only appropriate during kernel
initialization. User processes should never be permitted to panic the kernel.

– Page Allocator Flag: PAL_ZERO
Zero all the bytes in the allocated pages before returning them. If not set, the contents of
newly allocated pages are unpredictable.

– Page Allocator Flag PAL_USER
Obtain the pages from the user pool. If not set, pages are allocated from the kernel pool.
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• Function: void palloc_free_page (void *page)
Function: void palloc_free_multiple (void *pages, size_t page_cnt)
Frees one page, or page_cnt contiguous pages, respectively, starting at pages. All of the pages
must have been obtained using palloc_get_page or palloc_get_multiple.

3.4.2 Block Allocator

The block allocator, declared in threads/malloc.h, can allocate blocks of any size. It is layered on
top of the page allocator described in the previous section. Blocks returned by the block allocator are
obtained from the kernel pool.

The block allocator uses two di↵erent strategies for allocating memory. The first strategy applies to
blocks that are 1 KiB or smaller (one-fourth of the page size). These allocations are rounded up to the
nearest power of 2, or 16 bytes, whichever is larger. Then they are grouped into a page used only for
allocations of that size.

The second strategy applies to blocks larger than 1 KiB. These allocations (plus a small amount of
overhead) are rounded up to the nearest page in size, and then the block allocator requests that number
of contiguous pages from the page allocator.

In either case, the di↵erence between the allocation requested size and the actual block size is wasted.
A real operating system would carefully tune its allocator to minimize this waste, but this is unimportant
in an instructional system like Pintos.

As long as a page can be obtained from the page allocator, small allocations always succeed. Most
small allocations do not require a new page from the page allocator at all, because they are satisfied
using part of a page already allocated. However, large allocations always require calling into the page
allocator, and any allocation that needs more than one contiguous page can fail due to fragmentation,
as already discussed in the previous section. Thus, you should minimize the number of large allocations
in your code, especially those over approximately 4 KiB each.

When a block is freed, all of its bytes are cleared to 0xcc, as a debugging aid.
The block allocator may not be called from interrupt context.
The block allocator functions are described below. Their interfaces are the same as the standard C

library functions of the same names.

• Function: void * malloc (size_t size)
Obtains and returns a new block, from the kernel pool, at least size bytes long. Returns a null
pointer if size is zero or if memory is not available.

• Function: void * calloc (size_t a, size_t b)
Obtains a returns a new block, from the kernel pool, at least a * b bytes long. The block’s
contents will be cleared to zeros. Returns a null pointer if a or b is zero or if insu�cient memory
is available.

• Function: void * realloc (void *block, size_t new_size)
Attempts to resize block to new_size bytes, possibly moving it in the process. If successful,
returns the new block, in which case the old block must no longer be accessed. On failure, returns
a null pointer, and the old block remains valid.

A call with block null is equivalent to malloc. A call with new_size zero is equivalent to free.

• Function: void free (void *block)
Frees block, which must have been previously returned by malloc, calloc, or realloc (and not
yet freed).
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3.5 Linked Lists

Pintos contains a linked list data structure in lib/kernel/list.h that is used for many di↵erent pur-
poses. This linked list implementation is di↵erent from most other linked list implementations you may
have encountered, because it does not use any dynamic memory allocation.

/* List element. */
struct list_elem
{
struct list_elem *prev; /* Previous list element. */
struct list_elem *next; /* Next list element. */

};

/* List. */
struct list
{
struct list_elem head; /* List head. */
struct list_elem tail; /* List tail. */

};

In a Pintos linked list, each list element contains a “struct list_elem”, which contains the pointers
to the next and previous element. Because the list elements themselves have enough space to hold the
prev and next pointers, we don’t need to allocate any extra space to support our linked list. Here is an
example of a linked list element which can hold an integer:

/* Integer linked list */
struct int_list_elem
{
int value;
struct list_elem elem;

};

Next, you must create a “struct list” to represent the whole list. Initialize it with list_init().

/* Declare and initialize a list */
struct list my_list;
list_init (&my_list);

Now, you can declare a list element and add it to the end of the list. Notice that the second argument
of list_push_back() is the address of a “struct list_elem”, not the “struct int_list_elem” itself.

/* Declare a list element. */
struct int_list_elem three = {3, {NULL, NULL}};

/* Add it to the list */
list_push_back (&my_list, &three.elem);

We can use the list_entry() macro to convert a generic “struct list_elem” into our custom
“struct int_list_elem” type. Then, we can grab the “value” attribute and print it out:

/* Fetch elements from the list */
struct list_elem *first_list_element = list_begin (&my_list);
struct int_list_elem *first_integer = list_entry (first_list_element,

struct int_list_elem,
elem);

printf("The first element is: %d\n", first_integer->value);
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By storing the prev and next pointers inside the structs themselves, we can avoid creating new “linked
list element” containers. However, this also means that a list_elem can only be part of one list a time.
Additionally, our list should be homogeneous (it should only contain one type of element).

The list_entry()macro works by computing the o↵set of the elem field inside of “struct int_list_elem”.
In our example, this o↵set is 4 bytes. To convert a pointer to a generic “struct list_elem” to a pointer
to our custom “struct int_list_elem”, the list_entry() just needs to subtract 4 bytes! (It also casts
the pointer, in order to satisfy the C type system.)

Linked lists have 2 sentinel elements: the head and tail elements of the “struct list”. These
sentinel elements can be distinguished by their NULL pointer values. Make sure to distinguish between
functions that return the first actual element of a list and functions that return the sentinel head element
of the list.

There are also functions that sort a link list (using quicksort) and functions that insert an ele-
ment into a sorted list. These functions require you to provide a list element comparison function (see
lib/kernel/list.h for more details).

3.6 E�cient Alarm Clock

Here are some more details about the E�cient Alarm Clock task.

1. If timer_sleep() is called with a zero or negative argument, then you should just return imme-
diately.

2. When you run Pintos, the clock does not run in realtime by default. So, if a thread goes to sleep
for 5 “seconds” (e.g. ticks = 5 ⇥ TIMER FREQ), it will actually be much shorter than 5 seconds
in terms of wall clock time. You can use the --realtime flag for Pintos to override this.

3. Separate functions timer_msleep(), timer_usleep(), and timer_nsleep() do exist for sleeping
a specific number of milliseconds, microseconds, or nanoseconds, respectively, but these will call
timer_sleep() automatically when necessary. You do not need to modify them.

4. The code that runs in interrupt handlers (i.e. timer_interrupt()) should be as fast as possible.
It’s usually wise to do some pre-computation outside of the interrupt handler, in order to make
the interrupt handler as fast as possible. Additionally, you may not acquire locks while executing
timer_interrupt().

5. Pay close attention to the Pintos linked-list implementation. Each linked list requires a dedicated
list_elem member inside its elements. Every element of a linked list should be the same type. If
you create new linked lists, make sure that they are initialized. Finally, make sure that there are no
race conditions for any of your linked lists (the list manipulation functions are NOT thread-safe).

3.7 Priority Scheduler

Here are some more details about the Priority Scheduler task.

1. A thread’s initial priority is an argument of thread_create(). You should use PRI_DEFAULT (31),
unless there is a reason to use a di↵erent value.

2. Your implementation must handle nested donation: Consider a high-priority thread H, a medium-
priority thread M, and a low-priority thread L. If H must wait on M and M must wait on L, then
we should donate H’s priority to L.

3. A thread can only donate to 1 thread at a time, because once it calls lock_acquire(), the donor
thread is blocked.
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4. If there are multiple waiters on a lock when you call lock_release(), then all of those priority
donations must apply to the thread that receives the lock next.

5. You do not need to handle priority values outside of the allowed range, PRI_MIN (0) to PRI_MAX
(63).

6. You only need to implement priority donation for locks. Do not implement them for other syn-
chronization variables (it doesn’t make any sense to do it for semaphores or monitors anyway).
However, you need to implement priority scheduling for locks, semaphores, and condition variables.
Priority scheduling is when you unblock the highest priority thread when a resource is released or
a monitor is signaled.

7. Don’t forget to implement thread_get_priority(), which is the function that returns the cur-
rent thread’s priority. This function should take donations into account. You should return the
e↵ective priority of the thread.

8. A thread cannot change another thread’s priority, except via donations. The thread_set_priority()
function only acts on the current thread.

9. If a thread no longer has the highest e↵ective priority (e.g. because it released a lock or it called
thread_set_priority() with a lower value), it must immediately yield the CPU. If a lock is
released, but the current thread still has the highest e↵ective priority, it should not yield the CPU.

3.8 Advanced Scheduler

Here are some more details about the Advanced Scheduler task.

3.8.1 Introduction

The goal of a general-purpose scheduler is to balance threads’ di↵erent scheduling needs. Threads that
perform a lot of I/O require a fast response time to keep input and output devices busy, but need little
CPU time. On the other hand, compute-bound threads need to receive a lot of CPU time to finish their
work, but have no requirement for fast response time. Other threads lie somewhere in between, with
periods of I/O punctuated by periods of computation, and thus have requirements that vary over time.
A well-designed scheduler can often accommodate threads with all these requirements simultaneously.

For this task, you must implement the scheduler according to the specification in this section. How-
ever, the exact method of implementation is up to you. As long as the behavior of your scheduler
matches the specification here, it is acceptable.

Your advanced scheduler is a multilevel feedback queue scheduler. This type of scheduler main-
tains several queues of ready-to-run threads, where each queue holds threads with a di↵erent priority.
The scheduler always chooses a thread from the highest-priority non-empty queue. If the highest-priority
queue contains multiple threads, then they run in “round robin” order.

Multiple parts of this scheduler require data to be updated after a certain number of timer ticks.
In every case, these updates should occur before any ordinary kernel thread has a chance to run, so
that there is no chance that a kernel thread could see a newly increased timer_ticks() value but old
scheduler data values.

When the advanced scheduler is enabled, you should NOT do priority donation.

3.8.2 Fixed-point Real Numbers

Many of the calculations in the following section assume that you’re using real numbers, not inte-
gers. However, Pintos does not support floating point number operations. We have provided the
fixed-point.h library inside pintos/src/threads/fixed-point.h, which will allow you to use fixed
point numbers to represent real numbers. You should use fixed_point_t and the functions defined in
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fixed-point.h to represent any value that needs to be a real number. If you use integers, your values
will not be correct.

3.8.3 Niceness

Each thread has an integer nice value that determines how “nice” the thread should be to other threads.
A nice of zero does not a↵ect thread priority. A positive nice (to the maximum of 20) decreases the
priority of a thread and causes it to give up some CPU time it would otherwise receive. On the other
hand, a negative nice (to the minimum of -20) tends to take away CPU time from other threads.

The initial thread starts with a nice value of zero. Other threads start with a nice value inherited
from their parent thread. You must implement the functions described below, which are for use by the
test framework. We have provided skeleton definitions for them in “threads/thread.c”.

• Function: int thread_get_nice (void)
Returns the current thread’s nice value.

• Function: void thread_set_nice (int new_nice)
Sets the current thread’s nice value to new_nice and recalculates the thread’s priority based on
the new value. If the running thread no longer has the highest priority, it should yield the CPU.

3.8.4 Calculating Priority

Our scheduler has 64 priorities and thus 64 ready queues, numbered 0 (PRI_MIN) through 63 (PRI_MAX).
Lower numbers correspond to lower priorities, so that priority 0 is the lowest priority and priority 63 is
the highest. Thread priority is calculated initially at thread initialization. It is also recalculated once
every fourth clock tick, for every thread. In either case, it is determined by the formula

priority = PRI_MAX� (recent_cpu/4)� (nice⇥ 2)

In this formula, recent_cpu is an estimate of the CPU time the thread has used recently (see the
next section on recent_cpu) and nice is the thread’s nice value. The result should be rounded down
to the nearest integer (truncated). The coe�cients 1/4 and 2 on recent_cpu and nice, respectively,
have been found to work well in practice but lack deeper meaning. The calculated priority is always
adjusted to lie in the valid range PRI_MIN to PRI_MAX.

This formula is designed so that threads that have recently been scheduled on the CPU will have a
lower priority the next time the schedulerr picks a thread to run. This is key to preventing starvation: a
thread that has not received any CPU time recently will have a recent_cpu of 0, which barring a very
high nice value, should ensure that it receives CPU time soon.

3.8.5 Calculating Recent CPU

We wish recent_cpu to measure how much CPU time each process has received “recently.” One approach
would use an array of n elements to track the CPU time received in each of the last n seconds. However,
this approach requires O(n) space per thread and O(n) time per calculation of a new weighted average.

Instead, we use a exponentially weighted moving average, which takes this general form:

x(0) = f(0)

x(t) = a⇥ x(t� 1) + f(t)

a = k/(k + 1)

In this formula, x(t) is the moving average at integer time t � 0, f(t) is the function being averaged,
and k controls the rate of decay. We can iterate the formula over a few steps as follows:
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x(1) = f(1)

x(2) = a⇥ f(1) + f(2)

x(3) = a

2 ⇥ f(1) + a⇥ f(2) + f(3)

x(4) = a

3 ⇥ f(1) + a

2 ⇥ f(2) + a⇥ f(3) + f(4)

The value of f(t) has a weight of 1 at time t, a weight of a at time t+1, a2 at time t+2, and so on.
We can also relate x(t) to k: f(t) has a weight of approximately 1/e at time t+k, approximately 1/e2 at
time t+2⇥ k, and so on. From the opposite direction, f(t) decays to weight w at time t+ ln(w)/ln(a).

The initial value of recent_cpu is 0 in the first thread created, or the parent’s value in other new
threads. Each time a timer interrupt occurs, recent_cpu is incremented by 1 for the running thread only,
unless the idle thread is running. In addition, once per second the value of recent_cpu is recalculated
for every thread (whether running, ready, or blocked), using this formula:

recent_cpu = (2⇥ load_avg)/(2⇥ load_avg+ 1)⇥ recent_cpu+ nice

In this formula, load_avg is a moving average of the number of threads ready to run (see the next
section). If load_avg is 1, indicating that a single thread, on average, is competing for the CPU, then the
current value of recent_cpu decays to a weight of 0.1 in ln(0.1)/ ln( 23 ) = approx. 6 seconds; if load_avg
is 2, then decay to a weight of 0.1 takes ln(0.1)/ln( 34 ) = 0.8 seconds. The e↵ect is that recent_cpu
estimates the amount of CPU time the thread has received “recently,” with the rate of decay inversely
proportional to the number of threads competing for the CPU.

Assumptions made by some of the tests require that these recalculations of recent_cpu be made
exactly when the system tick counter reaches a multiple of a second, that is, when
timer_ticks() % TIMER_FREQ == 0, and not at any other time.

The value of recent_cpu can be negative for a thread with a negative nice value. Do not clamp
negative recent_cpu to 0.

You may need to think about the order of calculations in this formula. We recommend computing
the coe�cient of recent_cpu first, then multiplying. Some students have reported that multiplying
load_avg by recent_cpu directly can cause overflow.

You must implement thread_get_recent_cpu(), for which there is a skeleton in “threads/thread.c”.

• Function: int thread_get_recent_cpu(void)
Returns 100 times the current thread’s recent_cpu value, rounded to the nearest integer.

3.8.6 Calculating Load Average

Finally, load_avg, often known as the system load average, estimates the average number of threads
ready to run over the past minute. Like recent_cpu, it is an exponentially weighted moving average.
Unlike priority and recent_cpu, load_avg is system-wide, not thread-specific. At system boot, it is
initialized to 0. Once per second thereafter, it is updated according to the following formula:

load_avg = (59/60)⇥ load_avg+ (1/60)⇥ ready_threads

In this formula, ready_threads is the number of threads that are either running or ready to run at
time of update (not including the idle thread).

Because of assumptions made by some of the tests, load_avg must be updated exactly when the
system tick counter reaches a multiple of a second, that is, when timer_ticks() % TIMER_FREQ == 0,
and not at any other time.

You must implement thread_get_load_avg(), for which there is a skeleton in “threads/thread.c”.

• Function: int thread_get_load_avg(void)
Returns 100 times the current system load average, rounded to the nearest integer.
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3.8.7 Summary

The following formulas summarize the calculations required to implement the scheduler.
Every thread has a nice value between -20 and 20 directly under its control. Each thread also has a

priority, between 0 (PRI_MIN) through 63 (PRI_MAX), which is recalculated using the following formula
every fourth tick:

priority = PRI_MAX� (recent_cpu/4)� (nice⇥ 2)

recent_cpu measures the amount of CPU time a thread has received “recently.” On each timer tick,
the running thread’s recent_cpu is incremented by 1. Once per second, every thread’s recent_cpu is
updated this way:

recent_cpu = (2⇥ load_avg)/(2⇥ load_avg+ 1)⇥ recent_cpu+ nice

load_avg estimates the average number of threads ready to run over the past minute. It is initialized
to 0 at boot and recalculated once per second as follows:

load_avg = (59/60)⇥ load_avg+ (1/60)⇥ ready_threads

ready_threads is the number of threads that are either running or ready to run at time of update
(not including the idle thread).

3.8.8 Additional Details

1. When the advanced scheduler is enabled, you should NOT do priority donation.

2. When the advanced scheduler is enabled, threads no longer directly control their own priori-
ties. The priority argument to thread_create() should be ignored, as well as any calls to
thread_set_priority(), and thread_get_priority() should return the thread’s current pri-
ority as set by the scheduler.

3. Because many of these formulas involve fractions, you should use fixed-point real arithmetic
for your calculations. Use the fixed_point_t type and the library functions inside
pintos/src/threads/fixed-point.h to do your advanced scheduler calculations.

3.9 Debugging Tips

Many tools lie at your disposal for debugging Pintos. This section introduces you to a few of them.

3.9.1 printf

Don’t underestimate the value of printf. The way printf is implemented in Pintos, you can call it
from practically anywhere in the kernel, whether it’s in a kernel thread or an interrupt handler, almost
regardless of what locks are held.

printf is useful for more than just examining data. It can also help figure out when and where
something goes wrong, even when the kernel crashes or panics without a useful error message. The
strategy is to sprinkle calls to printf with di↵erent strings (e.g.: "<1>", "<2>", . . . ) throughout the
pieces of code you suspect are failing. If you don’t even see <1> printed, then something bad happened
before that point, if you see <1> but not <2>, then something bad happened between those two points,
and so on. Based on what you learn, you can then insert more printf calls in the new, smaller region
of code you suspect. Eventually you can narrow the problem down to a single statement. See section
Triple Faults, for a related technique.
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3.9.2 ASSERT

Assertions are useful because they can catch problems early, before they’d otherwise be noticed. Ideally,
each function should begin with a set of assertions that check its arguments for validity. (Initializers for
functions’ local variables are evaluated before assertions are checked, so be careful not to assume that
an argument is valid in an initializer.) You can also sprinkle assertions throughout the body of functions
in places where you suspect things are likely to go wrong. They are especially useful for checking loop
invariants.

Pintos provides the ASSERT macro, defined in <debug.h>, for checking assertions.

ASSERT (expression) Tests the value of expression. If it evaluates to zero (false), the kernel
panics. The panic message includes the expression that failed, its file and line number, and a
backtrace, which should help you to find the problem. See Backtraces, for more information.

3.9.3 Function and parameter attributes

These macros defined in <debug.h> tell the compiler special attributes of a function or function param-
eter. Their expansions are GCC-specific.

UNUSED Appended to a function parameter to tell the compiler that the parameter might not be
used within the function. It suppresses the warning that would otherwise appear.

NO RETURN Appended to a function prototype to tell the compiler that the function never returns.
It allows the compiler to fine-tune its warnings and its code generation.

NO INLINE Appended to a function prototype to tell the compiler to never emit the function in-line.
Occasionally useful to improve the quality of backtraces (see below).

PRINTF FORMAT (format, first) Appended to a function prototype to tell the compiler that
the function takes a printf-like format string as the argument numbered format (starting from
1) and that the corresponding value arguments start at the argument numbered first. This lets
the compiler tell you if you pass the wrong argument types.

3.9.4 Backtraces

When the kernel panics, it prints a “backtrace,” that is, a summary of how your program got where it
is, as a list of addresses inside the functions that were running at the time of the panic. You can also
insert a call to debug_backtrace, prototyped in <debug.h>, to print a backtrace at any point in your
code. debug_backtrace_all, also declared in <debug.h>, prints backtraces of all threads.

The addresses in a backtrace are listed as raw hexadecimal numbers, which are di�cult to interpret.
We provide a tool called backtrace to translate these into function names and source file line numbers.
Give it the name of your kernel.o as the first argument and the hexadecimal numbers composing the
backtrace (including the 0x prefixes) as the remaining arguments. It outputs the function name and
source file line numbers that correspond to each address.

If the translated form of a backtrace is garbled, or doesn’t make sense (e.g.: function A is listed
above function B, but B doesn’t call A), then it’s a good sign that you’re corrupting a kernel thread’s
stack, because the backtrace is extracted from the stack. Alternatively, it could be that the kernel.o
you passed to backtrace is not the same kernel that produced the backtrace.

Sometimes backtraces can be confusing without any corruption. Compiler optimizations can cause
surprising behavior. When a function has called another function as its final action (a tail call), the
calling function may not appear in a backtrace at all. Similarly, when function A calls another function
B that never returns, the compiler may optimize such that an unrelated function C appears in the
backtrace instead of A. Function C is simply the function that happens to be in memory just after A.

Here’s an example. Suppose that Pintos printed out this following call stack:
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Call stack: 0xc0106eff 0xc01102fb 0xc010dc22 0xc010cf67 0xc0102319
0xc010325a 0x804812c 0x8048a96 0x8048ac8.

You would then invoke the backtrace utility like shown below, cutting and pasting the backtrace
information into the command line. This assumes that kernel.o is in the current directory. You would
of course enter all of the following on a single shell command line, even though that would overflow our
margins here:

backtrace kernel.o 0xc0106eff 0xc01102fb 0xc010dc22 0xc010cf67 0xc0102319 0xc010325a
0x804812c 0x8048a96 0x8048ac8

The backtrace output would then look something like this:

0xc0106eff: debug_panic (lib/debug.c:86)
0xc01102fb: file_seek (filesys/file.c:405)
0xc010dc22: seek (userprog/syscall.c:744)
0xc010cf67: syscall_handler (userprog/syscall.c:444)
0xc0102319: intr_handler (threads/interrupt.c:334)
0xc010325a: intr_entry (threads/intr-stubs.s:38)
0x0804812c: (unknown)
0x08048a96: (unknown)
0x08048ac8: (unknown)

The first line in the backtrace refers to debug_panic, the function that implements kernel panics.
Because backtraces commonly result from kernel panics, debug_panic will often be the first function
shown in a backtrace.

The second line shows file_seek as the function that panicked, in this case as the result of an
assertion failure. In the source code tree used for this example, line 405 of filesys/file.c is the
assertion

assert (file_ofs >= 0);

(This line was also cited in the assertion failure message.) Thus, file_seek panicked because it
passed a negative file o↵set argument.

The third line indicates that seek called file_seek, presumably without validating the o↵set argu-
ment. In this submission, seek implements the seek system call.

The fourth line shows that syscall_handler, the system call handler, invoked seek.
The fifth and sixth lines are the interrupt handler entry path.
The remaining lines are for addresses below phys_base. This means that they refer to addresses

in the user program, not in the kernel. If you know what user program was running when the kernel
panicked, you can re-run backtrace on the user program, like so: (typing the command on a single line,
of course):

backtrace tests/filesys/extended/grow-too-big 0xc0106eff 0xc01102fb 0xc010dc22
0xc010cf67 0xc0102319 0xc010325a 0x804812c 0x8048a96 0x8048ac8

The results look like this:

0xc0106eff: (unknown)
0xc01102fb: (unknown)
0xc010dc22: (unknown)
0xc010cf67: (unknown)
0xc0102319: (unknown)
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0xc010325a: (unknown)
0x0804812c: test_main (...xtended/grow-too-big.c:20)
0x08048a96: main (tests/main.c:10)
0x08048ac8: _start (lib/user/entry.c:9)

You can even specify both the kernel and the user program names on the command line, like so:

backtrace kernel.o tests/filesys/extended/grow-too-big 0xc0106eff 0xc01102fb 0xc010dc22
0xc010cf67 0xc0102319 0xc010325a 0x804812c 0x8048a96 0x8048ac8

The result is a combined backtrace:
in kernel.o:

0xc0106eff: debug_panic (lib/debug.c:86)|
0xc01102fb: file_seek (filesys/file.c:405)|
0xc010dc22: seek (userprog/syscall.c:744)|
0xc010cf67: syscall_handler (userprog/syscall.c:444)|
0xc0102319: intr_handler (threads/interrupt.c:334)|
0xc010325a: intr_entry (threads/intr-stubs.s:38)|

in tests/filesys/extended/grow-too-big:

0x0804812c: test_main (...xtended/grow-too-big.c:20)|
0x08048a96: main (tests/main.c:10)|
0x08048ac8: _start (lib/user/entry.c:9)|

Here’s an extra tip for anyone who read this far: backtrace is smart enough to strip the call stack:
header and “.”” trailer from the command line if you include them. This can save you a little bit of
trouble in cutting and pasting. Thus, the following command prints the same output as the first one we
used:

backtrace kernel.o call stack: 0xc0106eff 0xc01102fb 0xc010dc22 0xc010cf67 0xc0102319
0xc010325a 0x804812c 0x8048a96 0x8048ac8.

3.9.5 GDB

You can run Pintos under the supervision of the gdb debugger. First, start Pintos with the --gdb
option, e.g.: pintos --gdb -- run mytest. Second, open a second terminal on the same machine and
use pintos-gdb to invoke gdb on kernel.o

pintos-gdb kernel.o

and issue the following gdb command:

target remote localhost:1234

Now gdb is connected to the simulator over a local network connection. You can now issue any
normal gdb commands. If you issue the c command, the simulated bios will take control, load Pintos,
and then Pintos will run in the usual way. You can pause the process at any point with ctrl+c.

Using GDB

You can read the gdb manual by typing info gdb at a terminal command prompt. Here’s a few
commonly useful gdb commands:
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c Continues execution until ctrl+c or the next breakpoint.

break function

break file:line

break *address Sets a breakpoint at function, at line within file, or address. (use a 0x prefix to
specify an address in hex.)

Use break main to make gdb stop when Pintos starts running.

p expression Evaluates the given expression and prints its value. If the expression contains a function
call, that function will actually be executed.

l *address Lists a few lines of code around address. (use a 0x prefix to specify an address in hex.)

bt Prints a stack backtrace similar to that output by the backtrace program described above.

p/a address Prints the name of the function or variable that occupies address. (use a 0x prefix to
specify an address in hex.)

diassemble function disassembles function.

We also provide a set of macros specialized for debugging Pintos, written by Godmar Back (gback@cs.vt.edu).
You can type help user-defined for basic help with the macros. Here is an overview of their function-
ality, based on Godmar’s documentation:

debugpintos Attach debugger to a waiting Pintos process on the same machine. Shorthand for
target remote localhost:1234.

dumplist &list type element Prints the elements of list, which should be a struct list that contains
elements of the given type (without the word struct) in which element is the struct list_elem
member that links the elements.

Example: dumplist &all_list thread allelem prints all elements of struct thread that are
linked in struct list all_list using the struct list_elem allelem which is part of struct thread.

btthread thread Shows the backtrace of thread, which is a pointer to the struct thread of the thread
whose backtrace it should show. For the current thread, this is identical to the bt (backtrace)
command. It also works for any thread suspended in schedule, provided you know where its
kernel stack page is located.

btthreadlist list element shows the backtraces of all threads in list, the struct list in which the
threads are kept. Specify element as the struct list_elem field used inside struct_thread to
link the threads together.

Example: btthreadlist all_list allelem shows the backtraces of all threads contained in
struct list all_list, linked together by allelem. This command is useful to determine where
your threads are stuck when a deadlock occurs. Please see the example scenario below.

btthreadall short-hand for btthreadlist all_list allelem.

btpagefault Print a backtrace of the current thread after a page fault exception. Normally, when a
page fault exception occurs, gdb will stop with a message that might say:

program received signal 0, signal 0.
0xc0102320 in intr0e_stub ()
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In that case, the bt command might not give a useful backtrace. Use btpagefault instead.

You may also use btpagefault for page faults that occur in a user process. In this case, you may
wish to also load the user program’s symbol table using the loadusersymbols macro, as described
above.

hook-stop GDB invokes this macro every time the simulation stops, which Bochs will do for every
processor exception, among other reasons. If the simulation stops due to a page fault, hook-stop
will print a message that says and explains further whether the page fault occurred in the kernel
or in user code.

If the exception occurred from user code, hook-stop will say:

pintos-debug: a page fault exception occurred in user mode
pintos-debug: hit ’c’ to continue, or ’s’ to step to intr_handler

In project 2, a page fault in a user process leads to the termination of the process. You should
expect those page faults to occur in the robustness tests where we test that your kernel properly
terminates processes that try to access invalid addresses. To debug those, set a break point in
page_fault in exception.c, which you will need to modify accordingly.

If the page fault did not occur in user mode while executing a user process, then it occurred in
kernel mode while executing kernel code. In this case, hook-stop will print this message:

pintos-debug: a page fault occurred in kernel mode

Followed by the output of the btpagefault command.

Sample GDB section This section narrates a sample gdb session, provided by Godmar Back. This
example illustrates how one might debug a project 1 solution in which occasionally a thread that
calls timer_sleep is not woken up. With this bug, tests such as mlfqs_load_1 get stuck.

This session was captured with a slightly older version of Bochs and the gdb macros for Pintos, so
it looks slightly di↵erent than it would now.

First, I start Pintos:

$ pintos -v --gdb -- -q -mlfqs run mlfqs-load-1

writing command line to /tmp/gdalqtb5uf.dsk...
Bochs -q
========================================================================
Bochs x86 emulator 2.2.5
build from cvs snapshot on december 30, 2005
========================================================================
00000000000i[ ] reading configuration from Bochsrc.txt
00000000000i[ ] enabled gdbstub
00000000000i[ ] installing nogui module as the Bochs gui
00000000000i[ ] using log file Bochsout.txt
waiting for gdb connection on localhost:1234

Then, I open a second window on the same machine and start gdb:

$ pintos-gdb kernel.o
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gnu gdb red hat linux (6.3.0.0-1.84rh)
copyright 2004 free software foundation, inc.
gdb is free software, covered by the gnu general public license, and you are
welcome to change it and/or distribute copies of it under certain conditions.
type "show copying" to see the conditions.
there is absolutely no warranty for gdb. type "show warranty" for details.
this gdb was configured as "i386-redhat-linux-gnu"...
using host libthread_db library "/lib/libthread_db.so.1".

Then, I tell gdb to attach to the waiting Pintos emulator:

(gdb) debugpintos
remote debugging using localhost:1234
0x0000fff0 in ?? ()
reply contains invalid hex digit 78

Now I tell Pintos to run by executing c (short for continue):

Now Pintos will continue and output:

pintos booting with 4,096 kb ram...
kernel command line: -q -mlfqs run mlfqs-load-1
374 pages available in kernel pool.
373 pages available in user pool.
calibrating timer... 102,400 loops/s.
boot complete.
executing ’mlfqs-load-1’:
(mlfqs-load-1) begin
(mlfqs-load-1) spinning for up to 45 seconds, please wait...
(mlfqs-load-1) load average rose to 0.5 after 42 seconds
(mlfqs-load-1) sleeping for another 10 seconds, please wait...

Until it gets stuck because of the bug I had introduced. I hit ctrl+c in the debugger window:

program received signal 0, signal 0.
0xc010168c in next_thread_to_run () at ../../threads/thread.c:649
649 while (i <= pri_max && list_empty (&ready_list[i]))
(gdb)

The thread that was running when I interrupted Pintos was the idle thread. If i run backtrace,
it shows this backtrace:

(gdb) bt
#0 0xc010168c in next_thread_to_run () at ../../threads/thread.c:649
#1 0xc0101778 in schedule () at ../../threads/thread.c:714
#2 0xc0100f8f in thread_block () at ../../threads/thread.c:324
#3 0xc0101419 in idle (aux=0x0) at ../../threads/thread.c:551
#4 0xc010145a in kernel_thread (function=0xc01013ff , aux=0x0)
at ../../threads/thread.c:575
#5 0x00000000 in ?? ()
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Not terribly useful. What I really like to know is what’s up with the other thread (or threads).
Since I keep all threads in a linked list called all_list, linked together by a struct list_elem
member named allelem, I can use the btthreadlist macro from the macro library I wrote.
btthreadlist iterates through the list of threads and prints the backtrace for each thread:

(gdb) btthreadlist &all_list allelem
pintos-debug: dumping backtrace of thread ’main’ @@0xc002f000
#0 0xc0101820 in schedule () at ../../threads/thread.c:722
#1 0xc0100f8f in thread_block () at ../../threads/thread.c:324
#2 0xc0104755 in timer_sleep (ticks=1000) at ../../devices/timer.c:141
#3 0xc010bf7c in test_mlfqs_load_1 () at ../../tests/threads/mlfqs-load-1.c:49
#4 0xc010aabb in run_test (name=0xc0007d8c "mlfqs-load-1")
at ../../tests/threads/tests.c:50
#5 0xc0100647 in run_task (argv=0xc0110d28) at ../../threads/init.c:281
#6 0xc0100721 in run_actions (argv=0xc0110d28) at ../../threads/init.c:331
#7 0xc01000c7 in main () at ../../threads/init.c:140

pintos-debug: dumping backtrace of thread ’idle’ @@0xc0116000
#0 0xc010168c in next_thread_to_run () at ../../threads/thread.c:649
#1 0xc0101778 in schedule () at ../../threads/thread.c:714
#2 0xc0100f8f in thread_block () at ../../threads/thread.c:324
#3 0xc0101419 in idle (aux=0x0) at ../../threads/thread.c:551
#4 0xc010145a in kernel_thread (function=0xc01013ff , aux=0x0)
at ../../threads/thread.c:575
#5 0x00000000 in ?? ()

In this case, there are only two threads, the idle thread and the main thread. The kernel stack pages
(to which the struct thread points) are at 0xc0116000 and verb—0xc002f000—, respectively.
The main thread is stuck in timer_sleep, called from test_mlfqs_load_1.

Knowing where threads are stuck can be tremendously useful, for instance when diagnosing dead-
locks or unexplained hangs.

loadusersymbols You can also use gdb to debug a user program running under Pintos. To do that,
use the loadusersymbols macro to load the program’s symbol table:

loadusersymbol program

Where program is the name of the program’s executable (in the host file system, not in the Pintos
file system). For example, you may issue:

(gdb) loadusersymbols tests/userprog/exec-multiple
add symbol table from file "tests/userprog/exec-multiple" at
.text_addr = 0x80480a0

After this, you should be able to debug the user program the same way you would the kernel,
by placing breakpoints, inspecting data, etc. Your actions apply to every user program running
in Pintos, not just to the one you want to debug, so be careful in interpreting the results: GDb
does not know which process is currently active (because that is an abstraction the Pintos kernel
creates). Also, a name that appears in both the kernel and the user program will actually refer
to the kernel name. (The latter problem can be avoided by giving the user executable name on
the gdb command line, instead of kernel.o, and then using loadusersymbols to load kernel.o.)
loadusersymbols is implemented via gdb’s add-symbol-file command.
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3.9.6 Triple Faults

When a CPU exception handler, such as a page fault handler, cannot be invoked because it is missing
or defective, the CPU will try to invoke the “double fault” handler. If the double fault handler is itself
missing or defective, that’s called a “triple fault.” a triple fault causes an immediate cpu reset.

Thus, if you get yourself into a situation where the machine reboots in a loop, that’s probably a
“triple fault.” In a triple fault situation, you might not be able to use printf for debugging, because
the reboots might be happening even before everything needed for printf is initialized.

There are at least two ways to debug triple faults. First, you can run Pintos in Bochs under GDB.
If Bochs has been built properly for Pintos, a triple fault under GDB will cause it to print the message
“triple fault: stopping for gdb” on the console and break into the debugger. (If Bochs is not running
under GDB, a triple fault will still cause it to reboot.) You can then inspect where Pintos stopped,
which is where the triple fault occurred.

Another option is what I call “debugging by infinite loop.” Pick a place in the Pintos code, insert
the infinite loop for (;;); there, and recompile and run. There are two likely possibilities:

The machine hangs without rebooting. If this happens, you know that the infinite loop is running.
That means that whatever caused the reboot must be after the place you inserted the infinite loop. Now
move the infinite loop later in the code sequence.

The machine reboots in a loop. If this happens, you know that the machine didn’t make it to the
infinite loop. Thus, whatever caused the reboot must be before the place you inserted the infinite loop.
Now move the infinite loop earlier in the code sequence.

If you move around the infinite loop in a “binary search” fashion, you can use this technique to pin
down the exact spot that everything goes wrong. It should only take a few minutes at most.

3.9.7 General Tips

The page allocator in threads/palloc.c and the block allocator in threads/malloc.c clear all the
bytes in memory to 0xcc at time of free. Thus, if you see an attempt to dereference a pointer like
0xcccccccc, or some other reference to 0xcc, there’s a good chance you’re trying to reuse a page that’s
already been freed. Also, byte 0xcc is the cpu opcode for “invoke interrupt 3,” so if you see an error
like interrupt 0x03 (#bp breakpoint exception), then Pintos tried to execute code in a freed page
or block.

An assertion failure on the expression sec_no < d->capacity indicates that Pintos tried to access a
file through an inode that has been closed and freed. Freeing an inode clears its starting sector number
to 0xcccccccc, which is not a valid sector number for disks smaller than about 1.6 TB.

3.10 Advice

In the past, many groups divided the assignment into pieces, then each group member worked on his or
her piece until just before the deadline, at which time the group reconvened to combine their code and
submit. This is a bad idea. We do not recommend this approach. Groups that do this often find that
two changes conflict with each other, requiring lots of last-minute debugging. Some groups who have
done this have turned in code that did not even compile or boot, much less pass any tests.

Instead, we recommend integrating your team’s changes early and often, using git. This is less likely
to produce surprises, because everyone can see everyone else’s code as it is written, instead of just when
it is finished. These systems also make it possible to review changes and, when a change introduces a
bug, drop back to working versions of code.

We also encourage you guys to pair or even group program. Having multiple sets of eyes looking at
the same code can help avoid/spot subtle bugs.

You should learn to use the advanced features of GDB. For this project, debugging your code usually
takes longer than writing it.

Do not commit/push binary files or unneeded log files.
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These projects are designed to be di�cult and even push you to your limits as a developer, so plan
to be busy the next three weeks, and have fun!
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