
Project 2: Join Algorithms and Query Optimization

Logistics

Due date: Wednesday 11/16/16, 11:59:59 PM

Grading

This project is worth 15% of your overall course grade. Your project grade will be out of 100 points:

90 points for passing all of the tests provided for you. All tests are in  src/test/java/edu/berkeley/cs186/database , so you
can run them as you write code and inspect the tests to debug. Our testing provides extensive unit testing and some
integration ﴾end‐to‐end﴿ testing.
10 points for writing your own, valid tests ﴾10 tests total, 1 point each﴿. The tests must pass both your implementation
and the staff solution to be considered valid tests.

Extra Credit

You can earn up to 10 points in extra credit:

5 points for submitting one week before the due date ﴾Wednesday 11/09/16, 11:59:59 PM﴿.
Up to 5 points for how effective your tests are. The way we will determine the effectiveness of your tests is based on how
many edge cases you identify that the rest of the class did not identify. You will not be graded on how many other
students' tests you pass.

Background

This project builds on top of the code and functionality that you should be familiar with from Project 1. In this project, you will
be implementing several of the join algorithms covered in class as well as a cost‐based query optimizer. We have released the
staff solutions for Project 1 to a private repository ﴾link can be found on Piazza﴿, and you are free to integrate those into your
codebase. Though if you feel confident about your own solutions to Project 1, you may stick with those as well. Regardless, a
correct working implementation of Project 1 is necessary in order to complete this project.

This project uses the same function‐oriented query interface we implemented in Project 1, but with a few differences. The
original implementation was inefficient because at every stage of the query processing pipeline, we would fully materialize
every record in memory. This means the query operators execute in sequential batches, and furthermore queries will fail if
data does not fit in memory. To address this, we have implemented an  Iterator  interface directly into each query operator,
and you'll be adding some more iterators for the join operators in this project!

Additionally, the original query plan would always execute a naive plan without any optimizations built in. We've included a
separate execution method that will leverage a query optimizer that you will be filling in to generate better plans according to
the System R cost‐based approach we've covered in class.

Getting Started

As usual, you can get the assignment from the Github course repository ﴾assuming you've set things up as we asked you to in
homework 0﴿ by running  git pull course master . This will get you all of the starter code we've provided, this project spec,
and all of the tests that we've written for you.

We've also generated all of the API documentation of the code as webpages viewable here

Setup

https://github.com/berkeley-cs186/course
http://www.cs186berkeley.net/projects/


All of the Java, Maven, and IntelliJ setup from Project 1 is still applicable for this project. Assuming that you were able to
complete Project 1, you should not need to do any additional setup for this project. Refer to the Project 1 spec for setup
details.

Starter Code

Package Overview

There's a bunch of code that we've provided for you, both from Project 1 and some new additions in this project. We strongly
suggest that you spend some time looking through it before starting to write your own code. The Project 1 spec contains
descriptions for each package of the codebase, but the relevant parts for this project are all in the  query  package. Briefly, it
consists of a  QueryPlan  class that holds the query optimizer, and several classes that all inherit from  QueryOperator  with each
class representing a different operator in the plan tree.

All of the starter code descriptions from Project 1 are still valid. We have modified some classes and added additional
functionality, but for the most part the code is the same except where we have specifically noted differences here in this
document.

Query Generation

The  QueryPlan  interface allows you to generate SQL‐like queries without having to parse actual SQL queries. We use the
same interface from Project 1 to create queries, but whereas before you would call the naive  QueryPlan#execute  method to
execute your query, now there exists a  QueryPlan#executeOptimal  which will generate an optimal plan, and then execute your
query.

If you would like to run queries on the database, you can create a new  QueryPlan  by calling  Transaction#query  and passing
the name of the base table for the query. You can then call the  QueryPlan#where ,  QueryPlan#join , etc. methods in order to
generate as simple or as complex a query as you would like. Finally, call  QueryPlan#executeOptimal  to run the query optimizer
and execute the query and get a response of the form  Iterator<Record> . You can also use the  Transaction#queryAs  methods
to alias tables.

As a quick example, a simple query might look something like this:

// create a new transaction 
Database.Transaction transaction = this.database.beginTransaction(); 

// alias both the Students and Enrollments tables 
transaction.queryAs("Students", "S"); 
transaction.queryAs("Enrollments", "E"); 

// add a join and a where to the QueryPlan 
QueryPlan query = transaction.query("S"); 
query.join("E", "S.sid", "E.sid"); 
query.where("E.cid", PredicateOperator.EQUALS, "CS 186"); 

// execute the query and get the output 
Iterator<Record> queryOutput = query.executeOptimal();

You can also examine the query plan tree generated by the query optimizer by printing the final operator of the query plan:

// assuming query.executeOptimal() has already been called as above 
QueryOperator finalOperator = query.getFinalOperator(); 
System.out.println(finalOperator.toString()); 

which results in a print‐out of the query plan:

type: BNLJ 
leftColumn: S.sid 
rightColumn: E.sid 

https://github.com/berkeley-cs186/course/blob/master/projects/Project1Spec.md#package-overview


    (left) 
    type: WHERE 
    column: E.cid 
    predicate: EQUALS 
    value: CS 186 
        type: SEQSCAN 
        table: E 

    (right) 
    type: SEQSCAN 
    table: S 

You can find more examples in the  OptimalQueryPlanTest  and  OptimalQueryPlanJoinsTest  files.

Your Assignment

Alright, now we can write some code! NOTE: Throughout this project, you're more than welcome to add any and all helper
methods you'd like to write. However, it is very important that you do not change any of the interfaces that we've given you.
It's also a good idea to always check the course repo for updates on the project.

Part 1: Join Algorithms

The first part of the project involves completing the implementations of  PNLJOperator ,  BNLJOperator , and
 GraceHashOperator , which correspond to page nested loop join, block nested loop join, and grace hash join, respectively.
Simple nested loop join has already been implemented for you in  SNLJOperator . We will not be implementing sort‐merge
join in this project. It is recommended that you look through the code for  SNLJOperator , and use this as an example of how
to implement a join algorithm before starting the others.

As a brief overview of how the join algorithms in this project work, each join operator first reads in the records from the left
input operator and the right input operator and stores those records in a left and right temporary table. The  JoinOperator 
abstract class, which all the join algorithms extend, provides several methods for accessing record or page iterators from the
left and right temporary tables along with other useful information. The  SNLJIterator  inside  SNLJOperator  reads records
from the left and right operators in a nested loop fashion and joins the appropriate records.

1.1 Page nested loop join

For the first part of this project you'll need to implement the  PNLJIterator  inside  PNLJOperator . Similar to the  SNLJIterator ,
this iterator should join records from the left and right source operators using a nested loop method. As discussed in class,
the difference in this join algorithm ﴾compared to simple nested loop join﴿ is that you iterate over the right table once for
every page in the left table instead of every record in the left table. Don't forget that the first page of a page iterator may be a
header page!

We strongly recommend you write helper methods that retrieve the next left record and the next right record when you need
to get them. Remember that a record is valid and should be retrieved only if the corresponding bit in the page header is set
to 1. The  PNLJIterator  class has a lot of member variables already given, which serve as a guide for what you might need.
You may also add any other member variables as you see fit. The order in which records are yielded is part of the tests, so
make sure you are following the algorithms from lecture correctly.

It would also be helpful to familiarize yourself with the implementation of  SNLJIterator  and  TableIterator  before starting
to write any code for this section.

1.2 Block nested loop join

Once you have implemented page nested loop join, you should be able to extend this logic to implement block nested loop
join. You'll need to implement the  BNLJIterator  inside  BNLJOperator  specifically. The algorithm should iterate over the right
table once for every block of  B‐2  pages in the left table instead of every page in the left table.  B  represents the total
number of memory pages available to the query, and is accessible from the  numBuffers  field of  BNLJOperator .

1.3 Grace hash join



For the last chunk of this section you'll need to implement grace hash join in the  GraceHashIterator  inside
 GraceHashOperator . For grace hash join, you can make the simplifying assumption that we don't need to do recursive
partitioning ﴾i.e. you will only partition the inputs once and not multiple times﴿. On the first phase of the algorithm, each
record is hashed into its corresponding partition by being added to a temporary table that represents that partition. For an
example of this, you can look inside the  GroupByOperator  class. However unlike the  GroupByOperator , you should use a
 DataType 's  hashCode()  method and the modulo operator to hash a record to a particular partition. On the second phase,
you can build an in‐memory hash table using Java's built‐in  HashMap  class. You should build an in‐memory hash table using
the records from the left input partitions, and probe the hash table using the records from the right input partitions.

1.4 Testing

Once you've implemented all of these methods, you should be passing all of the tests in  JoinOperatorTest . We strongly
recommend you start writing tests once you've wrapped your head around the code to try to catch some of the edge cases
that you might have missed. It's generally a good idea to write your own tests as you go along due to the fact that the given
tests don't cover all edge cases.

Part 2: Query Optimization

The second part of the project is focused on the query optimizer. We have provided some structure to help you get started.
The  QueryPlan#executeOptimal  method runs the query optimizer and has been implemented already. This method calls other
methods which you'll need to implement in order to make sure the optimizer works correctly.

As an overview of what this method does, it first searches for the lowest cost ways to access each single table in the query.
Then using the dynamic programming search algorithm covered in lecture, it will try to compute a join between a set of tables
and a new table if there exists a join condition between them. The lowest cost join of all the tables is found, and then a group
by and select operator is applied on top if those are specified in the query. The method returns an iterator over the final
operator created. The search should only consider left‐deep join trees and avoid Cartesian products. Note that we are not
expecting you to consider "interesting orders" for the purposes of this project.

For an example of the naive query plan generation, look at the code inside  QueryPlan#execute() . Note that the query
optimizer code will look quite different from the naive code, but the naive code still serves as a good example of how to
compose a query plan tree.

2.1 Cost estimation

The first part of building the query optimizer is ensuring that each query operator has the appropriate IO cost estimates. In
order to estimate IO costs for each query operator, you will need the table statistics for any input operators. This information
is accessible from the  QueryOperator#getStats  method. The  TableStats  object returned represents estimated statistics of the
operator's output, including information such as number of tuples and number of pages in the output among others. These
statistics are generated whenever a  QueryOperator  is constructed.

All of the logic for estimating statistics has been fully implemented except for the calculation of the reduction factor of a
 WHERE  predicate. You must implement the  IntHistogram#computeReductionFactor  method which will return a reduction factor
based on the type of predicate given. The reduction factor calculations should be the same as those that were taught in class.

After implementing this method, you should be passing all of the tests in  IntHistogramTest .

Each type of  QueryOperator  has a different  estimateIOCost  method which handles IO cost estimation. You will be
implementing this method in a few of the operators. This method should estimate the IO cost of executing a query plan
rooted at that query operator. It is executed whenever a  QueryOperator  is constructed, and afterwards the cost of an operator
can be accessed from the  QueryOperator#getIOCost  method.

Several operators already have their  estimateIOCost  methods implemented. In this project, you are only responsible for
implementing this method in  IndexScanOperator ,  SNLJOperator ,  PNLJOperator ,  BNLJOperator , and  GraceHashOperator . For
the index scan cost, assume an unclustered index is used. The methods in  Transaction  and  TableStats#getReductionFactor 
will be useful for implementing the index scan cost. For the grace hash join cost, assume there is only one phase of
partitioning.



After implementing the methods in this section, you should be passing all of the tests in  QueryPlanCostsTest . And you should
now have everything you need to start building the search algorithm.

2.2 Single table access selection ﴾Pass 1﴿

The first part of the search algorithm involves finding the lowest cost plans for accessing each single table in the query. You
will be implementing this functionality in  QueryPlan#minCostSingleAccess . This method takes in a single table name and
should first calculate the estimated IO cost of performing a sequential scan. Then if there are any eligible indices that can be
used to scan the table, it should calculate the estimated IO cost of performing such an index scan. The
 QueryPlan#getEligibleIndexColumns  method can be used to determine whether there are any existing indices that can be
used for this query. Out of all of these operators, keep track of the lowest cost operator.

Then as part of a heuristic‐based optimization we covered in class, you should push down any selections that correspond to
the table. You should be implementing the push down select functionality in  QueryPlan#pushDownWheres  which will be called
by the  QueryPlan#minCostSingleAccess  method.

The end result of this method should be a query operator that starts with either a  SequentialScanOperator  or
 IndexScanOperator  followed by zero or more  WhereOperator 's.

After implementing all the methods up to this point, you should be passing all of the tests in  OptimalQueryPlanTest . These
tests do not involve any joins.

2.3 Join selection ﴾Pass i > 1﴿

The next part of the search algorithm involves finding the lowest cost join between each set of tables in the previous pass and
a separate single table. You will be implementing this functionality in  QueryPlan#minCostJoins . Remember to only consider
left‐deep plans and to avoid creating any Cartesian products. Use the list of explicit join conditions added through the
 QueryPlan#join  method to identify potential joins. Once you've identified a potential join between a left set of tables and a
right table, you should be considering each type of join implementation in  QueryPlan#minCostJoinType  which will be called by
the  QueryPlan#minCostJoins  method.

The end result of this method should be a mapping from a set of tables to a join query operator that corresponds to the
lowest cost join estimated.

2.4 Testing

If you've completed all the sections up to this point, you should now be passing all of the tests that we've given you. Again,
we strongly encourage you to write tests as you go to try to catch any relevant bugs in your implementation.

Part 3: Testing

We can't emphasize enough how important it is to test your code! Like we said earlier, writing valid tests that test actual code
﴾i.e., don't write  assertEquals(true, true); , or we'll be mad at you﴿ is worth 10% of your project grade.

CS 186 is a design course, and validating the reasonability and the functionality of the code you've designed and
implemented is very important. We suggest you try to find the trickiest edge cases you can and expose them with your tests.
Testing that your code does exactly what you expect in the simplest case is good for sanity's sake, but it's often not going to
be where the bugs are.

To encourage you to try to find interesting edge cases, we're going to give you some extra credit. If you find edge cases that
most other students didn't find, you can get up to 5 points of extra credit. Keep in mind that if some other people find the
same edge cases as you, that doesn't mean you won't get extra credit ‐‐ so don't treat this as a competition!

Writing Tests

In the  src/test  directory you'll notice we've included several tests for you already. You should take a look at these to get a
sense of how to write tests. You should write your tests in one of the existing files according to the functionality you're trying
to test.



All test methods you write should have both the  @Test  and  @Category(StudentTestP2.class)  annotations. Note that this is
different from the  @Category(StudentTest.class)  annotation you used in Project 1! This is important in making sure that your
Project 2 tests are not mixed up with your Project 1 tests. We have included an example test in the  OptimalQueryPlanTest 
class:

@Test 
@Category(StudentTestP2.class) 
public void testSample() { 
  assertEquals(true, true); // Do not actually write a test like this! 
} 

Then whenever you run  mvn test , your test will be run as well. To run only the tests that you wrote for this project, you may
run  mvn test ‐Dtest=StudentTestSuiteP2 . You now also have the ability to run only the tests in a specific package. For
example, you may run  mvn test ‐Dtest="edu.berkeley.cs186.database.query.*"  to run all of the tests in the  query  package.
This may be helpful for debugging to save you time from running the whole test suite.

Part 4: Feedback

We've been working really hard to give you guys the best experience possible with these new projects. We'd love to improve
on them and make sure we're giving reasonable assignments that are helping you learn. In that vein, please fill out this
Google Form to help us understand how we're doing!

https://docs.google.com/forms/d/e/1FAIpQLSfGhIr2jksbr4rIwcIp3lIDckejj7vBcXTni6-gwpOBm9Q5uA/viewform

