
Homework 2 Part 2
Speaker Verification via Convolutional Neural Networks

11-785: Introduction to Deep Learning (Fall 2018)

OUT: September 25th, 2018
DUE: October 15th, 2018, 11:59 PM

1 Introduction

Determining whether two speech segments were uttered by the same speaker has several important applica-
tions. This problem is known as speaker verification.

In this assignment, you will use convolutional neural networks (CNNs) to design a system for speaker
verification. End-to-end, your system will be given two utterances as input and will output a score that
quantifies the similarity it detects among the speakers of these utterances. Ultimately, this allows us to
decide whether the utterances belong to the same speaker, in fact, or to different speakers.

To this end, you will train on a dataset with a few thousand hours of speaker-labeled speech (i.e., a set of
utterances, each labeled by an ID that uniquely identifies its speaker). In doing so, you will gain experience
with the concept of embeddings (in this case, embeddings for speaker information), optionally several relevant
loss functions, and, of course, convolutional layers as effective shift-invariant feature extractors. Additionally,
you will begin to develop skills necessary for processing and training with big data, which is often the scale
at which deep neural networks demonstrate excellent performance in practice.

2 Speaker Verification

An input to your system is a trial, that is, a pair of utterances that may or may not belong to the same
speaker. Given a trial, your goal is to output a numeric score that quantifies how similar the speakers of
the two utterances appear to be. On some scale, a higher score will indicate higher confidence that the two
utterances belong to one and the same speaker in fact.

Below, we provide a brief outline of how you might use CNNs to compute such similarity scores effectively.

2.1 Speaker Embeddings

Intuitively, speech utterances contain a lot of acoustic features that vary across different speakers. Your
main task is to train a CNN to extract and represent such important features from an utterance. These
extracted features will be represented in a fixed-length vector of features, known as a speaker embedding.
Given two speaker embeddings, you will use an appropriate metric (e.g., cosine similarity or (negative) L2
distance between the computed embeddings) to produce your similarity scores. We recommend you use (or
at least begin by using) cosine similarity.

Accordingly, once you have trained your CNN, your end-to-end speaker verification system will use your
CNN as follows. Given two utterances, you will pass each utterance through your CNN to generate two
speaker embeddings, among which you will compute your similarity score. This score will be the output of
your overall system. The next natural question is: how should you train your CNN to produce high-quality
speaker embeddings?
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2.2 N-way Classification

This is the simplest approach and the one we will (mostly) focus on in this assignment. We recommend you
implement and tune this before considering more advanced alternatives.

Let our speaker-labeled dataset contain M utterances spoken by N unique speakers (here, M > N). Your
goal is to use this data to train your CNN so that it produces “good” speaker embeddings. One reasonable
way to do so is to optimize these embeddings for predicting the identities of the training speakers from their
speech. The resulting embeddings will clearly encode a lot of speaker-varying features, just as desired. This
suggests an N -way classification task, where you classify every utterance among N classes (i.e., one for every
unique speaker in the training set).

More concretely, your network will consist of several (convolutional) layers for feature extraction. The
input will be (possibly a part of) an utterance. The output of the last such feature extraction layer is
your speaker embedding. You will pass this speaker embedding through a linear layer with dimensions
embedding dim×num speakers, followed by softmax, to classify utterances among the N (i.e., num speakers)
speakers.

You can then use cross-entropy loss to optimize your network to predict the correct speaker for every training
utterance. After the network is trained, you will remove the linear/classification layer. This leaves you with
a CNN that computes speaker embeddings given arbitrary speech utterances.

2.3 Alternative Approaches

The main shortcoming of the N -way classification approach is that it does not directly optimize the speaker
embeddings for the similarity metric used at test time (e.g., cosine similarity). More interesting approaches
involve more specialized loss functions. Ordered roughly (and subjectively) by the complexity of implemen-
tation, center loss, contrastive loss, triplet loss, and angular loss are all appropriate functions to consider.

2.4 System Evaluation

This subsection briefly describes how the “quality” of your similarity scores will be evaluated. Given similarity
scores for many trials, some threshold score is needed to actually accept or reject pairs as same-speaker pairs
(i.e., when the similarity score is above the threshold) or different-speaker pairs (i.e., when the score is below
the threshold), respectively. For any given threshold, some percentage of the different-speaker pairs will be
accepted (known as the false acceptance rate) and some percentage of the same-speaker pairs will be rejected
(known as the false rejection rate).

A natural choice of threshold is one which equates these two proportions. Indeed, your similarity scores will
be evaluated using the Equal Error Rate (EER) metric, which is the percentage of pairs at which the false
acceptance and false rejection rates are equated. Naturally, you want the EER of your system to be as low
as possible.

3 Dataset

In this assignment, you will work with data that is fairly large in size.1 As you probably know, large
training data is often the scale at which deep neural networks demonstrate excellent performance in practice.
Nonetheless, it is important to note that the assignment is specifically designed so it is entirely possible to
do well while directly handling the full dataset only as a final stage. To this end, we have split the training
data into several chunks, each with the utterances of a unique subset of the training speakers. Accordingly,

1Our raw data is around 150 GB in size, but the features you will train and evaluate with are much smaller for several
reasons, including the use of 16-bit features and the application of some limited Voice Activity Detection beforehand.
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you will develop and debug on a small chunk (less than 2 GB), prototype and tune on a larger subset of
chunks (10 GB after preprocessing), and train your final model on the full set (40 GB after preprocessing).

3.1 S3 Instructions

Our training, validation, and test data are hosted on AWS S3. To download, you will need to have the
awscli2 command line utility installed. The installation can be as easy as a pip install awscli (possibly
with sudo).

After installing, you will need to run aws configure. This command requires an AWS Access Key ID and
an AWS Secret Access Key. You can obtain these under Secrity Credentials3 (specifically, in the box for
Access keys). Please note you might need to create a new access key if you don’t have one already.

The aws configure command will also prompt you for a Default Region Name. Please insert us-east-1.
You can leave the Default Output Format option empty.

3.2 File Structure

For convenient development and prototyping, the data is split into three compressed files: hw2p2 A.tar.gz

(765 MB compressed), hw2p2 B.tar.gz (5.8 GB compressed), and hw2p2 C.tar.gz (18 GB compressed).

• hw2p2 A.tar.gz: This contains a single, small training chunk, namely the file 1.npz (< 2 GB). You
should use 1.npz for local development and debugging.

– aws s3 cp s3://11785fall2018/hw2p2 A.tar.gz .

• hw2p2 B.tar.gz: This contains two larger training chunks, namely 2.npz (< 4 GB) and 3.npz (< 8
GB), as well as the validation set dev.npz. Once you have verified the correctness of your code, we
recommend that you test your model prototypes by training on the three chunks (i.e., 1-3.npz) while
monitoring your EERs using the provided validation set.

– aws s3 cp s3://11785fall2018/hw2p2 B.tar.gz .

• hw2p2 C.tar.gz: This contains three larger training chunks, namely 4.npz (< 8 GB), 5.npz (< 16
GB), and 6.npz (< 16 GB) as well as the test set test.npz. To save time and money/credits, we
recommend that you only train your model on the full data (i.e., 1-6.npz) after you have both verified
the correctness of your code and tuned/tested a satisfactory prototype on a smaller subset.

– aws s3 cp s3://11785fall2018/hw2p2 C.tar.gz .

3.3 Training Set

The training data is processed and structured into two arrays, features and speakers, where features[i]

contains the ith utterance, spoken by the speaker with ID at speakers[i]. An utterance is a (variable-
length) array of frames. Each frame has 64 log mel filters, encoded as 16-bit floating-point numbers. There
are 100 such frames per second of speech.

The provided starter code will help you load any desired number of training data chunks (e.g., 1.npz, 2.npz,
and 3.npz for prototyping). Further, note that segments of silence do exist in the audio and a significant
fraction of them were not removed in the features we provide you. With the aid of some starter code, you
will preprocess the utterances to filter out silent frames. We discuss the starter code in detail in Section 4.

2https://aws.amazon.com/cli/
3https://console.aws.amazon.com/iam/home#/security_credential

3

https://aws.amazon.com/cli/
https://console.aws.amazon.com/iam/home##/security_credential


3.4 Validation and Test Sets

This section applies to both the validation and test setups. In each, you will be provided a list of en-
rollment utterances, a list of test utterances, and a list of trials. For our purposes, there is no particu-
lar difference between enrollment and test utterances; all are just speech segments. A trial is a pair of
(enrollment utterance index, test utterance index). For every trial, you will output a single numer-
ical score that measures their speaker(s) similarity.

For the validation set, the trials provided are labeled. For every trial, the label is True iff its two utterances
belong to the same speaker indeed. Starter code will help you load the validation and test sets and compute
your EERs on the validation set.

4 Getting Started

We provide starter code in two files: preprocess.py and utils.py. Below, we describe how you should
(i) preprocess the provided features, (ii) load subsets of the training data while prototyping and experiment-
ing, (iii) train with N -way classification on the variable-length utterances, and (iv) evaluate your EERs on
the validation set. The starter code uses the following pip packages: scipy, sklearn, and tqdm.

4.1 Preprocessing

• python2 preprocess.py <path to npz files> <chunk among {1, 2, .., 6, dev, test}>: This
is a small script that, by default, applies some basic Voice Activity Detection (VAD) and normalization
to the specified <chunk> (among training 1-6, validation dev, and test test features). The script will
write its output as a <chunk>.preprocessed.npz file to disk. These are the files that will be loaded
for training, validation, and testing.4

Voice Activity Detection (VAD): As mentioned in Section 3, the utterances contain silence segments.
These are clearly not useful for training (or during testing), and it is critical that they are filtered out in
a preprocessing stage. This stage, in which we only retain frames that are detected to contain speech, is
referred to as Voice Activity Detection (VAD).

One simple way to apply VAD is to remove a frame if the maximum filter intensity is below some sensible
threshold. In preprocess.py, you can find some default code and parameters. Feel free to keep it as-is, to
modify the threshold, or to modify the VAD approach itself (e.g., computing the mean instead of maximum
across filters). The same applies to the default normalization present in the starter code.

4.2 Loading Training Data

• from utils import train load: The function train load(path, parts) allows you to specify which
preprocessed parts of the training data (i.e., among {1, 2, ..., 6}) you want to use, and loads them from
disk. The specified parts should exist in the supplied path as *.preprocessed.npz files (i.e., as
generated by the preprocess.py script). The function train load stacks all utterances from the
specified subsets together and conveniently re-numbers the speaker IDs into a dense integer domain
(i.e., {0, 1, 2, ..., N − 1} for N speakers).

For early/local development and debugging, it suffices to use the small chunk 1.npz. For prototyping and
tuning, we recommend that you use the chunks 1-3.npz. We recommend that you only train your model on
the full data (i.e., 1-6.npz) after you have both verified the correctness of your code and tested a satisfactory
prototype on a smaller subset.

4We recommend using Python 2 when running the preprocess.py script. Some installations of Python 3 may fail during
numpy.savez for large files. Otherwise, your code (and other provided starter code) can be used with any of Python 2 and 3.
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4.3 Training with N-way Classification

At this stage, you have loaded the training data into memory in a simple (and, by now, familiar) format. You
have variable-length utterances in array features and their corresponding speaker IDs in array speakers.
In your training loop, you will sample a batch of utterances, run each utterance through your network (i.e.,
generating an embedding for each, followed by a linear layer to classify among the N classes, followed by
lastly optimizing with cross-entropy loss on top of softmax).

As usual, the variation in length across the training samples presents some practical challenges during
training. Luckily, we are only interested in the speaker information encoded in an utterance (i.e., and not
the contents of the utterance itself). As a result, it is reasonable to decide upon some fixed number of frames
(e.g., 5000 frames, which correspond to 50 seconds of speech) a priori, then, during training (and testing),
randomly trim all utterances in any given batch (i.e., starting at random offset in each) to this number of
frames. If an utterance happens to be too short, you can wrap around back from the beginning.

Clearly, the number of frames retained is a hyperparameter you will have to tune taking into account factors
like the distribution of utterance lengths, the training time, and the GPU memory available. Further, this
is not the only way to handle the varying lengths, so feel free to test alternatives.

4.4 Validation with EER

• from utils import dev load, test load: These functions load the validation and test data. Each
takes one argument: the path to the (preprocessed) validation or test data (i.e., the [dev|test]

.preprocessed.npz files).

• from utils import EER: The function EER(labels, scores) is useful for validation. It takes a list of
(gold standard) True/False labels and the corresponding similarity scores generated by your system.
It returns the EER and the threshold at which EER occurs.

To track your progress, after an epoch of training, you can compute a similarity score for every trial in the
validation set then use the EER function provided.

More specifically, recall from Section 3.4 that the validation data consists of features (in two arrays,
enrollment and test) and a list of (labeled) trials. While you can use your CNN to generate embed-
dings twice per trial, significant pre-computation is possible. In particular, it will be substantially more
efficient to simply embed all the utterances in the enrollment and test arrays once at the beginning of a
validation phase. Then, when processing each trial, you can simply look up the pre-computed embeddings
in order to compute the appropriate similarities (e.g., using the cosine similarity metric).

5 Conclusion

That’s all. As always, feel free to ask on Piazza if you have any questions.

Good luck and enjoy the challenge!
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