
Homework 4
Attention-based End-to-End Speech-to-Text Deep Neural Network

11-785: Introduction to Deep Learning (Fall 2018)

OUT: October 29th, 2018
DUE: November 26th, 2018, 11:59 PM

Start Here

• Collaboration policy:

– You are expected to comply with the University Policy on Academic Integrity and Plagiarism.

– You are allowed to talk with with other students on homework assignments

– You can share ideas but not code, you must submit your own code. All submitted code will be
compared against all code submitted this semester and in previous semesters using MOSS.

• Overview:

– This homework consists of only one part. There is NO Part 2 for this assignment.

• Submission:

– You only need to implement what is mentioned in the writeup and submit your results to Kaggle.
We will share a Google form after the Kaggle competition ends for you to submit your code.
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1 Introduction

In the previous homework we have learned how to predict the next phoneme in the sequence given the
corresponding utterances. In this homework, we will be solving a very similar problem, except, you do not
have the phonemes. You are ONLY given utterances and their corresponding transcripts.

In short, you will be using a combination of Recurrent Neural Networks (RNNs) / Convolutional Neural
Networks (CNNs) and Dense Networks to design a system for speech to text transcription. End-to-end, your
system should be able to transcribe a given speech utterance to its corresponding transcript.

2 Dataset

You will be working on the WSJ dataset again. You are given a set of 5 files train.npy.zip (2.4 GB),
dev.npy.zip (105.81 MB compressed), test.npy.zip (58.27 MB), train transcripts.npy.zip (5.68 MB),
and dev transcripts.npy.zip (247.16 kB).

• train.npy: The training set contains training utterances each of variable duration and 40 frequency
bands.

• dev.npy: The development set contains validation utterances each of variable duration and 40 fre-
quency bands.

• test.npy: The test set contains test utterances each of variable duration and 40 frequency bands.
There are no labels given for the test set.

• train transcripts.npy: These are the transcripts corresponding to the utterances in train.npy.
These are arranged in the same order as the utterances.

• dev transcripts.npy: These are the transcripts corresponding to the utterances in dev.npy. These
are arranged in the same order as the utterances.

3 Approach

There are many ways to approach this problem. In any methodology you choose, we require you to use an
attention based system like the one mentioned in the baseline (or another kind of attention) so that you
achieve good results.

Attention Mechanisms are widely used for various applications these days. More often than not, speech tasks
can also be extended to images. If you want to understand more about attention, please read the following
papers:
1. Listen, Attend and Spell
2. Show, Attend and Tell (Optional)

3.1 LAS

The baseline model for this assignment is described in the Listen, Attend and Spell paper. The idea is to
learn all components of a speech recognizer jointly. The paper describes an encoder-decoder approach, called
Listener and Speller respectively.

The Listener consists of a Pyramidal Bi-LSTM Network structure that takes in the given utterances and
compresses it to produce high-level representations for the Speller network.

The Speller takes in the high-level feature output from the Listener network and uses it to compute a
probability distribution over sequences of characters using the attention mechanism.
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Attention intuitively can be understood as trying to learn a mapping from a word vector to some areas of
the utterance map. The Listener produces a high-level representation of the given utterance and the Speller
uses parts of the representation (produced from the Listener) to predict the next word in the sequence.

This system in itself is powerful enough to get you to the top of the leader-board once you apply the beam
search algorithm (no third-party packages, you implement it yourself).

3.1.1 LAS - Variant 1

It is interesting to see that the LAS model only uses a single projection from the Listener network. We
could instead take two projections and use them as an Attention Key and an Attention Value. It’s actually
recommended.

Your encoder network over the utterance features should produce two outputs, an attention value and a key
and your decoder network over the transcripts will produce an attention query.

We are calling the dot product between that query and the key the energy of the attention. Feed that energy
into a Softmax, and use that Softmax distribution as a mask to take a weighted sum from the attention value
(apply the attention mask on the values from the encoder). That is now called attention context, which is
fed back into your transcript network.

This model has shown to give amazing results, we strongly recommend you to implement this in place of the
vanilla LAS baseline model.

3.1.2 LAS - Variant 2

The baseline model implements a pyramidal Bi-LSTM to compute the features from the utterances. You can
conveniently swap the entire Listener block with any combination of LSTM/CNN/Linear networks. This
model is interesting to try once you have the baseline working.

3.1.3 Character Based vs Word Based

We are giving you raw text in this homework. You are free to build a character-based or word-based model.

Word-based models won’t have incorrect spelling and are very quick in training because the sample size
decreases drastically. The problem is, it cannot predict rare words.

The paper describes a character-based model. Character-based models are known to be able to predict some
really rare words but at the same time they are slow to train because the model needs to predict character
by character.
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4 Implementation Details

4.1 Variable Length Inputs

This would have been a simple problem to solve if all inputs were of the same length. You will be dealing
with variable length transcripts as well as variable length utterances. There are many ways in which you
can deal with this problem. We will list down some ways ordered by the difficulty of implementation, there
will be a trade-off between the implementation complexity, model performance and computational speed.
We suggest you to implement 4.1.5 or 4.1.6, but you get to pick your poison.

4.1.1 Batch size one training instances

Idea: Give up on using mini-batches.

Pros:

• Trivial to implement with basic tools in the framework

• Helps you focus on implementing and testing the functionality of your modules

• No need to worry about padding or three-dimensional matrix operation, or sorting by length

• Can still run pretty quickly for sequences that have high-dimensional elements, or when you matrix
multiply two complete sequences.

• Is not a bad choice for validation and testing since those aren’t as performance critical.

Cons:

• Runs very slowly when you’re doing mostly linear-time processing with lower-dimensional elements.

• It’s very easy to accidentally apply simplifications to your code that aren’t valid when the batch size
is more than 1, making it much harder to upgrade to a better method.

• Once you decide to allow non-1 batch sizes, your code will be broken until you make the update for all
modules.

4.1.2 Pass in lists and loop over each instance

Idea: Run batch size one code in a loop across instances in a batch. Training data is a Python list and not
a tensor.

Pros:

• Almost just as simple as batch size one method, and with slightly better performance.

• Custom collate function needed, but it’s very easy to implement.

• When you decide to vectorize your code across batches, you can keep the for loop implementation for
modules that aren’t performance critical.

• Even after you implement padding, it’s easy to build a list back from it for any loop-based code.

Cons:

• Still very slow for many problems

• You still end up with code that might be very hard to rewrite into vectorized forms
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4.1.3 Use padded data and masks

Idea: Perform the full computation on padded values, and mask away the unneeded values at the end.

Pros:

• Actually uses vectorization across batches, so there is potential for very good performance

• Computation of a mask is not very hard to do manually

Neutral:

• Custom collate function needed to pad the data, but this is a pretty standard requirement for all the
faster methods.

• It’s sometimes simpler to use a list of sequence lengths instead of a binary mask. The mask is only
needed if zero padding can affect the results.

Cons:

• Need to be very careful not to let padding values affect your results. Many vectorized functions are
affected by zeros too. Makes it harder to use library functions.

- Softmax breaks when some of its inputs are 0.

- Averaging needs a dot product with the mask.

- Backward pass of bidirectional LSTM will read lots of zeros before reading your true data.

- You need to explicitly do 2 one-directional LSTM’s, with two inputs where one has reversed
data (but padding in the same locations).

• Need to pass a mask through all the modules if you have any nontrivial computations.

• When sequence lengths are very different in a batch, you end up with lots of unnecessary computation.

4.1.4 Sort all the training data by sequence length, then mask

Idea: By sorting the training data, we keep the training instances similar in length.

Pros:

• Faster computation than normal masking method

• Sorting gives us a second benefit. For each position in the time dimension, only a consecutive range of
training instances contain valid data. This lets us use vectorized operations on just the valid training
instances just by slicing data, which is very useful if we needed to for-loop over the sequence dimension
anyway (sound familiar?).

Cons:

• You need to be careful with the data loader. Either you randomly generate an offset and choose several
consecutive training instances from that offset (requires a fully hand-written data loader), or you give
up on randomization entirely.

• Don’t forget to shuffle the labels in the same you way you shuffled the data! If you forget, the network
will be learning garbage and it’ll be really hard to figure out why.

• If you have multiple sequences with unrelated lengths, you can only choose to sort one. You’ll still
need to use a different approach to deal with the unsorted sequences.
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4.1.5 Use the built-in pack padded sequence and pad packed sequence

Idea: PyTorch already has functions you can use to pack your data

Pros:

• All the RNN modules directly support packed sequences

• The slicing optimization mentioned in the previous item is already done for you! For LSTM’s at least.

• Probably the fastest possible implementation.

Cons:

• These functions will only work if you sort the sequences by length.

You can choose to sort the whole dataset, which would require crafting your own data loader logic.

You can sort each batch separately, remembering to shuffle the labels everytime as well.

• It’s still annoying to deal with multiple sequences of unrelated lengths. We can’t use pack/unpack for
all but one of the sequences.

You’d have to be really careful to work around the sorting of one of the sequences. Sorting-related
bugs can be very nasty and hard to find.

• If you index directly into the packed sequence without knowing what you’re doing (e.g. without
unpacking), you will be confused by the bad performance of your network.

4.1.6 Use a custom wrapper around pack padded sequence and pad packed sequence

Idea: Enough with sorting! I don’t want to deal with sorting or argsort or inverse permutations or any of
that nonsense. My LSTM’s make up 90% of my running time so I don’t care if I just use a for loop for all
the non-LSTM stuff. Just let me pack and unpack anything I want.

Implementation: Your custom pack function sorts by sequence length, packs the data then returns a tuple
(packed data, permutation used for sort). Your custom unpack function will take those two values, unpacks
the data and then undoes the permutation used for sorting. Therefore, custom unpack(custom pack(data,
sequence lengths)) = (data unchanged, sequence lengths unchanged).

Pros:

• Make these functions work correctly and no more sorting related bugs.

• LSTM’s will still run very quickly

• Can handle multiple sequences of unrelated lengths much better. All the order-related bookmarking
is done for you.

Cons:

• Can’t use the sorted data optimization manually anywhere else. You’re stuck with either masks or
for-loops.

• Slightly slowed than the built-in pack and unpack, because of all the shuffling that happens.

4.2 Transcript Processing

HW4 transcripts are a lot like hw3p1, except we did the processing for you in hw3p1. That means you
are responsible for reading the text, creating a vocabulary, mapping your text to numpy arrays of ints, etc.
Ideally, you should process your data from what you are given into a format similar to hw3p1.
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In terms of inputs to your network, this is another difference between hw4 and hw3p1. Each transcript/utterance
is a separate sample that is a variable length. We want to predict all characters, so we need a start and end
character added to our vocabulary.

You can make them both the same number, like 0, to make things easier.

If the utterance is ”hello”, then:

inputs=[start]hello
outputs=hello[end]

4.3 Listener - Encoder

Your encoder is the part that runs over your utterances to produce attention values and keys. This should
be straight forward to implement. You have a batch of utterances, you just use a layer of Bi-LSTMs to
obtain the features, then you perform a pooling like operation by concatenating outputs. Do this three times
as mentioned in the paper and lastly project the final layer output into an attention key and value pair.

pBLSTM Implementation:

This is just like strides in a CNN. Think of it like pooling or anything else. The difference is that the paper
chooses to pool by concatenating, instead of mean or max.

You need to transpose your input data to (batchsize, Length, dim). Then you can reshape to (batchsize,
length/2, dim*2). Then transpose back to (length/2, batchsize, dim*2).

All that does is reshape data a little bit so instead of frames 1,2,3,4,5,6, you now have (1,2),(3,4),(5,6).

Alternatives you might want to try are reshaping to (batchsize, length/2, 2, dim) and then performing a
mean or max over dimension 3. You could also transpose your data and use traditional cnn pooling layers
like you have used before. This would probably be better than the concatenation in the paper.

Two common questions:

• What to do about the sequence length? You pooled everything by 2 so just divide the length array by
2. Easy.

• What to do about odd numbers? Doesn’t actually matter. Either pad or chop off the extra. Out of
2000 frames one more or less shouldn’t really matter and the recordings don’t normally go all the way
to the end anyways (they aren’t tightly cropped).

4.4 Speller - Decoder

Your decoder is an LSTM that takes word[t] as input and produces word[t+1] as output on each timestep.
The decoder is similar to hw3p1, except it also receives additional information through the attention context
mechanism. As a consequence, you cannot use the LSTM implementation in PyTorch directly, you would
instead have to use LSTMCell to run each timestep in a for loop. To reiterate, you run the timestep, get
the attention context, then feed that in to the next timestep.

4.5 Cross-Entropy Loss with Padding

First, you have to generate a boolean mask indicating which values are padding and which are real data. If
you have an array of sequence lengths, you can generate the mask on the fly. The comparison range(shaped
L, 1) ¡ sequence lengths (shaped 1, N) will produce a mask of true and false of the shape (L,N), which is
what you want. That should make sense to everybody. If you have the numbers from 0-L and you check
which are less than the sequence length, then that is true for every position until the sequence length and
false afterwards.
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Now you have at least three options:

- Use the boolean mask to index just the relevant parts of your inputs and targets, and send just those to
the loss calculation

- Send your inputs and targets to the loss calculation (set reduce=False), then use the boolean mask to zero
out anything that you don’t care about

- Use the ignore index parameter and set all of your padding to a specific value.

There is one final interesting option, which is using PackedSequence. If your inputs and outputs are Packed-
Sequence, then you can run your loss function on sequence.data directly. Note sequence.data is a variable
but variable.data is a tensor.

Typically, we will use the sum over the sequence and the mean over the batch. That means take the sum of
all of the losses and divide by batch size.

If you’re wondering ”why” consider this: if your target is 0 and your predicted logits are a uniform 0, is your
loss 0 or something else?

4.6 Inference - Random Search

The easiest thing for decoding would be to just perform a random search. How to do that?

• Pass only the utterance and the [start] character to your model

• Generate text from your model by sampling from the predicted distribution for some number of steps.

• Generate many samples in this manner for each test utterance (100s or 1000s). You only do this on
the test set to generate the Kaggle submission so the run time shouldn’t matter.

• Calculate the sequence lengths for each generated sequence by finding the first [end] character

• Now run each of these generated samples back through your model to give each a loss value

• Take the randomly generated sample with the best loss value, optionally reweighted or modified in
some way like the paper

Much easier than a beam search and results are also pretty good as long as you generate enough samples
which shouldn’t be a problem if you code it efficiently and only run it once at the end.

But if you really want to squeeze every bit of value you can, implement beam search yourself, it is a bit
tricky, but guaranteed to give good results. Note that you are not allowed to use any third party packages
like in HW3.

4.7 Character based - Implementation

Create a list of every character in the dataset and sort it. Convert all of your transcripts to numpy arrays
using that character set. For Kaggle submissions, just convert everything back to text using the same
character set.

4.8 Word based - Implementation

Split every utterance on spaces and create a list of every unique word. Build your arrays on integer values
for training. For Kaggle submission, just join your outputs using spaces.
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4.9 Good initialization

As you may have noticed in hw3p1, a good initialization significantly improves training time and the final
validation error. In general, you should try to apply that idea to any task you are given. In HW4, you can
train a language model to model the transcripts (similar to just HW3P1). You can then train LAS and add
its outputs to you LM outputs at each timestep. LAS is then only trying to learn how utterances change the
posterior over transcripts, and the prior over transcripts is already learned. It should make training much
faster (not in terms of processing speed obviously, but in terms of iterations required).

An alternative with similar effects is to pretrain the speller to be a language model before starting the real
training. During that pretraining, you can just set the attended context to some random value.

4.10 Layer sizes

The values provided in the LAS model (listener of hidden size 256 per direction, speller of hidden size
512) are good, no need to try something larger. The other sizes should be smaller (for example, attention
key/query/value of size 128, embedding of size 256). Adding tricks such as random search, pretraining,
locked dropout, will have more effect than increasing sizes higher than that.

Attentional models are hard to converge, so it’s recommended to start with a much smaller model than that
in your debugging phase, to be sure your model is well-built before trying to train it. For example, only one
layer in the speller, 2 in the listener, and layer sizes twice smaller.

5 Evaluation

Kaggle will evaluate your outputs with the Levenshtein distance, aka edit distance : number of character
modifications needed to change the sequence to the gold sequence. To use that on the validation set, you
can use the python-Levenshtein package.

During training, it’s good to use perplexity (exponential of the loss-per-word) as a metric, both on the train
and validation set, to quantify how well your model is learning.

5.1 Some numbers

Here are figures that may answer some of your questions. They are valid for character-based models.

• Your initial perplexity should start around 30

• A language model not using the audio (aka what you should get immediately after pretraining), should
be able to get your perplexity at least below 4

• You may have trouble crossing some threshold around perplexity 18 in your training. This corresponds
to simple predictions, like only the space character. If that happens, persists several epochs, or change
optimizer/learning rate/other optimization parameters.

• The perplexity corresponding to good outputs should be below 1.3.

• Although cutoffs aren’t strictly fixed yet, the threshold for 85/100 will be around edit distance 20, and
the one for 100/100 around 10.

• The LAS model with the tricks mentioned, here and in the paper, is enough to get to any of these
cutoffs. Adding more stuff to the model (like CNN layers in the listener, or ensembling different models)
may help you go even further.

9



6 Getting Started

You are not given any template code for this homework. So, it is important that you design the code well
by keeping it as simple as possible to help with debugging. This homework can take a significant amount of
your time so please start early, the baseline is already given, so you know what will work.

Note that contrary to the previous homeworks, here all models are allowed. We impose that you use attention,
but it is pretty much necessary to get good results anyway, so that’s not really a constraint. You are not
required to use the same kind of attention as the one we presented : for those familiar with self-attention,
multi-headed attention, the transformer network or whatever else, that’s perfectly fine to use as long as you
implement it yourself. No limits, except that you can’t add extra data from different datasets.

7 Conclusion

This homework is a true litmus test for your understanding of concepts in Deep Learning. It is not easy
to implement, and the competition is going to be tough. But we guarantee you, that if you manage to
complete this homework by yourself, you can confidently walk up anywhere and claim that you are now a
Deep Learning Specialist!

Good luck and enjoy the challenge!
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