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ABSTRACT
The economic value of a new mobile caching method utilizing
vehicles is studied. An optimization model is built using stochas-
tic geometry tools. Two possible choices of utility functions are
discussed together with some preliminary results.
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1 INTRODUCTION
Due to the widespread use of smart devices, recent years have
witnessed the rapid growth in the volume of mobile data traffic. In
response, efforts have been made to cache popular contents on edge
devices such as small cells or user devices. These contents can then
be retrieved directly from edge devices, without passing through
the network core. Recently, some works [4] have proposed the use
of vehicles as cache carriers and relay nodes. Compared to small
cells, vehicular points are expected to have higher density and lower
operating cost in an urban environment. Vehicles’ mobility also
allows them to more flexibly meet the dynamic content demands
across time and space. While the locations of small cells are fixed
once they are installed, vehicles can dynamically migrate to areas
with heavier data traffic. This helps to improve the rate of utilization
of the cached contents, thus increasing the value of these caches.

Most existing works on mobile caches focus on the optimization
of the contents allocated to the caches. In this work, we instead
quantify the economic value of having vehicular caches in the first
place, as the cache demands vary over time and space. Our results
can help guide Internet service providers (ISPs) that want to relieve
the traffic in their network, or content delivery network (CDN)
operators that provide caching services to content providers.

The major challenges of the research include 1) Modeling the
mobility of vehicles; 2) Quantifying the physical and economic
interaction of vehicular caching with other caching methods, e.g.,
interference with stationary small cell caches; and 3) Solving for
the optimal cache provisioning, which is a non-convex problem.

2 SYSTEM MODEL
Suppose there is a competitive caching market comprised of two
tiers of caching products: small cell caching and vehicular caching.
The buyers (operators) subscribe to a combination of the two prod-
ucts to maximize their utilities. The products are sold in terms of
per unit intensity, which is the expected number of devices in a
unit area. I.e., the buyers decide the intensity of small cells Ls and
that of vehicles Lv to be deployed in their networks. We assume an
existing macrocell tier with fixed, exogenous intensity Lm , leading
to a 3-tier heterogeneous network. We focus only on the caching
market and do not consider dual-purpose products, e.g., the back-
haul access provided by femtocells that also act as caches. Our

future work will generalize the current findings to other types of
caches, e.g., including device-to-device caching.

To address the temporal and spatial dynamics of the caching
system, we divide the decision space intoT time slots andD regions.
For each (t ,d ) ∈ [T ] × [D], assume the locations of all communi-
cation equipments (i.e. caching points, macro cells and vehicles)
follow some homogeneous Poisson point process (PPP) with con-
stant intensity value Lk (t ,d ),k ∈ {m, s,v,u} where u denotes users
and {m, s,v} the caching tiers. Since macro cells and small cells
are unable to move, unlike vehicles, their intensities are fixed over
time. I.e. ∀t1, t2,Lk (t1,d ) = Lk (t2,d ),k ∈ {m, s}. The price Pk per
intensity that the operator must pay to use the caches, may depend
on (t ,d ) as well, and is fixed in advance by the cache devices. We
will consider finding the optimal prices in our future work.

To facilitate the analysis, contents are assumed to be cached as
chunks with the same size. Each chunk is associated with an ex-
ogenous preference (probability of being requested) fi , i = 1, 2, . . .
Without loss of generality, we assume f1 ≥ f2 ≥ . . . Two chunks
may come from the same content source yet have different prefer-
ences, e.g., some segments of a video may be more popular than
others [4]. The preferences can also be a function of (t ,d ), which
allows the temporal and spatial differences of user demands. In
that case, the index i can itself depend on time and region. But we
generally omit the (t ,d ) notation for the purposes of clarity.

All devices within the same tier share the same configuration, i.e.
they have the same price Pk (t ,d ), transmit power pk and storage
capacity Nk . Communication inside a region is assumed to only
interfere with devices within that region. The content allocation
policy is modeled in terms of the caching probability. In tier k , the
content i is cached with probability Hk,i (t ,d ). We can therefore
model different allocation policies by choosing different values of
H . It follows that all chunks are “cached” with probability 1 in the
macro cell tier, i.e. Hm,i (t ,d ) ≡ 1.

We assume caching tiers are transparent to the users. I.e. user
requests are always directed to the cell with the highest signal-
to-interference-plus-noise ratio (SINR). This guarantees that the
users always benefit from caching. The assumption can be relaxed
without changing the framework of this study by assigning to each
tier a connecting preference [2].

3 PROFIT MAXIMIZATION
The operators solve the maximization problem as follows to find
the optimal intensities L∗v ,L∗s which they should subscribe.

maximize
Lv ,Ls ∈R[T ]×[D]

γU (Lv ,Ls ) − tr(PTv Lv ) − tr(P
T
s Ls )

subject to Lv (t ,d ) ≥ 0,Ls (t1,d ) = Ls (t2,d ) ≥ 0.

Here U (Lv ,Ls ) is some utility function, γ is a scaling coefficient,
and the remaining terms represent the cost of using the cache. In
the remaining part of this section, we will discuss two possible
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Figure 1: As the price Pv (1, ·) varies (y-axis), the optimal ve-
hicle intensity at each time (x-axis) also varies, allowing the
CDN to achieve a higher profit than with only small cells.

utility models under the following naive content allocation policy:

Hk,i (t ,d ) =

{
1, i ≤ Nk
0, otherwise (1)

Following the naive allocation policy, each tier sequentially
caches the most popular chunk (i = 1), the second most popu-
lar chunk (i = 2), etc., until reaches its capacity Nk . This policy is
generally not optimal, but it can be easily implemented without the
need for additional information required by other policies.

3.1 Utility from Cache Hits
CDN operators are typically paid for the amount of data offloaded to
their infrastructure. They thus earn more profits with a higher rate
of cache hits. Thus, we define their utility as the probability that a
typical request is offloaded to the cache (Eq. 2). The γ coefficient
then denotes the marginal value of cache hits, which is proportional
to the per-byte monetary payoff to the CDN service.

U =
∑
t,d

Lu (t ,d )

∥Lu ∥1

∑
i

fi (t ,d )
∑

k ∈{s,v }

P(S = k |t ,d, i ) (2)

Here S = k |t ,d, i denotes the event that tierk is selected for a typical
request for content i originating from (t ,d ). It can be shown that
under the PPP distribution and the transparent network assumption,
the probability P(S = k |t ,d, i ) has the form

P(S = k |t ,d, i ) =
p2/αk Hk,i (t ,d )Lk (t ,d )∑

j ∈{m,s,v } p
2/α
j Hj,i (t ,d )Lj (t ,d )

(3)

Here α is the path loss coefficient. Applying the naive allocation pol-
icy, and assuming that small cells have larger capacity (Ns > Nv ),
we can derive closed-form solutions for the optimization problem.

As a demonstration, we consider an area with a business region
and a residential region. A typical day is divided into two time slots:
the business hours and the off hours. For simplification, suppose
prices are only functions of time, i.e. both regions share the same
price at each time slot. Figure 1 shows the change of the optimal
demands for both products with respect to the price of vehicles
in the business hours. The price in business hours also affects the
demands in off hours. We see that the optimal vehicular intensity
greatly varies in the business and off hours, reflecting the value of
having mobile caches that can relocate to different areas.

3.2 Utility from Downlink Rate
Unlike CDNs, ISPs do not directly profit from cache hits. Instead,
their revenue comes from mobile users. In a typical competitive
market, an ISP attracts more subscribers by improving the perfor-
mance (e.g. coverage, downlink rate, uplink rate etc.) of its network,
and caching is one way to improve the downlink rate. Thus, as is
suggested by [2], we define the utility function as the logarithm
of the downlink rate. Its marginal value (i.e. the γ term) can be
evaluated using tools such as the discrete choice model [1].

LetWk be the bandwidth associated with tier k , β be the portion
of bandwidth allocated to the typical user, τ be the SINR threshold,
C be the probability the typical user is in coverage. The logarithm
of the downlink rate logR, can be written as

U = logR = log log(1 + τ ) + log(β ) + log(W ) + log(C ) (4)

With this utility function, the ISP’s resulting optimization prob-
lem is generally non-convex. But it can be efficiently solved by
fractional programming algorithms [3], and we find that the opti-
mal intensity varies similarly to Figure 1 for CDNs.

4 CONCLUSION AND FUTUREWORK
We propose to use vehicles as caching points to improve the per-
formance of the current wireless network. The mobility of vehicles
is modeled by discretizing the space into several regions and time
slots and using stochastic geometry tools. To study the economic
value of the vehicular caching, we formulate a profit maximization
problem with small cell caching as a competing product.

For the next step, we plan to refine the current methods, and
look into some key problems that can be solved by our models.
Some possible insights include: 1) How is the demand affected by
prices in other time slots and regions; 2) How much do the CDN
operators/ISPs/users benefit from vehicular caching; and 3) How
much lower can vehicle intensity be (thus potentially reducing
caching costs) while yielding the same utility as a small cell cache
deployment.
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