
Network-Aware Optimization of
Distributed Learning for Fog Computing

Yuwei Tu‡, Yichen Ruan†, Satyavrat Wagle†, Christopher G. Brinton∗, and Carlee Joe-Wong†
∗Purdue University, †Carnegie Mellon University, ‡Zoomi Inc.

∗cgb@purdue.edu, †{yichenr, srwagle, cjoewong}@andrew.cmu.edu

Abstract—Fog computing promises to enable machine learning
tasks to scale to large amounts of data by distributing processing
across connected devices. Two key challenges to achieving this are
(i) heterogeneity in devices’ compute resources and (ii) topology
constraints on which devices can communicate. We are the
first to address these challenges by developing a network-aware
distributed learning optimization methodology where devices
process data for a task locally and send their learnt parameters
to a server for aggregation at certain time intervals. Unlike
traditional federated learning frameworks, our method enables
devices to offload their data processing tasks, with these decisions
determined through a convex data transfer optimization problem
that trades off costs associated with devices processing, offloading,
and discarding data points. We analytically characterize the op-
timal data transfer solution for different fog network topologies,
showing for example that the value of a device offloading is
approximately linear in the range of computing costs in the
network. Our subsequent experiments on both synthetic and
real-world datasets we collect confirm that our algorithms are
able to improve network resource utilization substantially without
sacrificing the accuracy of the learned model.

Index Terms—federated learning, offloading, fog computing

I. INTRODUCTION

New technologies like autonomous cars and smart factories
are coming to rely extensively on data-driven machine learning
(ML) algorithms [1]–[3] to produce near real-time insights
based on historical data. Training ML models at realistic
scales, however, is challenging, given the enormous computing
power required to process today’s data volumes. The collected
data is also dispersed across networks of devices, while ML
models are traditionally managed in a centralized manner [4].

Fortunately, the rise in data generation in networks has
been accompanied by a corresponding rise in the computing
power of networked devices. Thus, a possible solution for
training and making real-time inferences from data-driven ML
algorithms lies in the emerging paradigm of fog computing,
which aims to design systems, architectures, and algorithms
that leverage an aggregation of device capacities between
the network edge and cloud [5]. Deployment of 5G wireless
networks and the Internet of Things (IoT) is accelerating
adoption of this computing paradigm by expanding the set
of connected devices with compute capabilities and enabling
direct device-to-device communications. Though centralized
ML algorithms are not optimized for such environments, data
analytics is expected to be a major driver of 5G adoption [6].

Initial efforts in decentralizing ML have focused on decom-
posing model parameter updates over several nodes, typically

(a) Hierarchical (b) Social network

Fig. 1: Cartoon illustrations of two example topologies for fog
computing that we consider. In the hierarchical case, less powerful
devices are connected to more powerful ones, while for the social
network, connections are denser and devices tend to be similar.

managed by a centralized serving entity [7], [8]. Most of
these methods, however, implicitly assume idealized network
topologies where node and link properties are homogeneous.
Fog environments, by contrast, are characterized by devices’
heterogeneity both in available compute resources and in
connectivity with each other, e.g., due to power constraints
or mobility. Figure 1 illustrates two example fog topologies.
A central question that arises, then, in adapting ML method-
ologies to these environments is: How should each fog device
contribute to the ML training and inference? We answer this
question by developing a methodology for optimizing the
distribution of processing across a network of fog devices.

A. Machine Learning in Fog Environments

ML models are generally trained by iterating over a dataset
to estimate parameter values (e.g., weights in a neural network)
that best “fit” the empirical data. We face two major challenges
in adapting such training to fog environments: (i) heterogeneity
in devices’ compute resources and (ii) constraints on devices’
abilities to communicate with each other. We outline these
characteristics in some key applications below:
Privacy-sensitive applications. Many ML applications learn
models on sensitive user data, e.g., for health monitoring [3].
Due to privacy concerns, most of these applications have
devices train their models on local data to avoid revealing
data to untrustworthy nodes [9]. Offloading data processing
to trusted devices, e.g., those owned by friends, however, can
reduce training times and improve model accuracy.
Internet-connected vehicles can collaboratively learn about
their environment [1], e.g., by combining their data with that
of road sensors to infer current road or traffic conditions. Since
sensors have less computing capabilities than vehicles, they
will likely offload their data to vehicles or roadside units for

processing. This offloading must adapt as vehicles move and
their connectivity with (stationary) sensors changes.
Augmented reality (AR) uses ML algorithms for e.g., image
recognition [2] to overlay digital content onto users’ views
of an environment. A network of AR-enabled devices can
distributedly train ML models, but may exhibit significant
heterogeneity: they can range from generic smartphones to
AR-specific headsets, with different battery levels. As the users
move, connectivity between devices will also change.
Industrial IoT. 5G networks will allow sensors that power
control loops within factory production lines to communicate
across the factory floor [1], [10], in turn enabling distributed
ML algorithms to use this data for, e.g., predicting production
delays. Our work can determine which controllers should
process data from which sensors: this depends on sensor-
controller connectivities, which may vary with factory activity.

B. Outline and Summary of Contributions
We first differentiate our work from related literature in

Section II. To the best of our knowledge, we are the first to
optimize the distribution of ML data processing (i.e., training)
tasks across fog nodes, leading to several contributions:
Formulating the task distribution problem (Section III).
In deciding which devices should process which datapoints,
our formulation accounts for resource limitations and model
accuracy. While ideally more of the data would be processed at
devices with more computing resources, sending data samples
to such devices may overburden the network. Moreover, pro-
cessing too many data samples can incur large processing costs
relative to the gain in model accuracy. We derive new bounds
(Theorem 1) on the model accuracy when data can be moved
between devices, and show that the optimal task distribution
problem can be formulated as a convex optimization that can
be solved rapidly even for large networks.
Characterizing the optimal task distribution (Section IV).
Solving the optimization problem formulated in Section III
requires specifying parameters that may not be known in
advance, e.g., the number of datapoints that each device can
process in a single timeslot. We analyze the expected devia-
tions from our assumptions in Section III to derive guidelines
on how these parameters should be set (Theorem 2). We then
derive the optimal task distributions for typical fog network
topologies (Theorems 3 and 4) and use them to estimate the
value (i.e., reduction in processing costs) of allowing devices
to move processing tasks to other devices (Theorems 5 and 6).
Experimental validation (Section V). We train classification
models on the MNIST dataset to validate our algorithms. We
use data traces from a Raspberry Pi testbed to emulate net-
work delays and compute resource availability. Our proposed
algorithm nearly halves the computing overhead yet achieves
an accuracy comparable to centralized model training.

Due to page limitations, proofs are abbreviated as sketches;
full versions are available in the technical report [11].

II. RELATED WORK

We contextualize our work within prior results on (i)
federated learning algorithms and (ii) methods for offloading

ML tasks from mobile devices to edge servers. In classical
distributed learning, multiple “workers” each compute a gra-
dient or parameter value on their own local data. These results
are aggregated at a central server, and updated parameter
values are sent back to the workers to begin another round
of local computations. In the federated learning framework,
devices instead perform a series of local updates between
aggregations [8], [12], [13]. Such a framework preserves user
privacy by keeping data at local devices [14] and reduces the
communication between devices and the central server.

Federated learning introduces two major new challenges:
first, since each device generates the data it analyzes, the data
may not be identically or independently distributed across
the different devices. Second, since the local devices are
typically resource-constrained, they may have limited ability
to rapidly compute gradient values and communicate with the
aggregation server. Many works have attempted to address the
first challenge, e.g., through sharing user data [15] or training
user-specific models [16]. When the devices attempt to learn
a single model, recent efforts have considered optimizing the
frequency of parameter aggregations according to available
network and computing resources [4], or adopting a peer-to-
peer framework in which parameter updates are shared with
neighboring devices instead of a central server [17]. However,
these works do not optimally distribute parameter compu-
tations between devices, and do not consider the compute-
communication tradeoffs inherent in fog scenarios.

Offloading computations from constrained mobile devices
to nearby edge servers when there is a high-bandwidth con-
nection between them will intuitively improve system perfor-
mance, and has been shown to significantly accelerate training
of a linear regression model [18] and inference on a neural
network model [19]. Other works have considered splitting
deep neural network layers between fog devices and an edge
server for faster inference [20], [21]. We instead consider
generic ML frameworks, and additionally provide theoretical
performance bounds not found in these prior works.

III. MODEL AND OPTIMIZATION FORMULATION

In this section, we define models for fog networks (Sec-
tion III-A) and ML training (Section III-B), and then formulate
the ML task distribution optimization problem (Section III-C).

A. Fog Computing System Model

Fog computing nodes. We consider a set V of n devices, an
aggregation server s, and discrete time intervals t = 1, . . . , T .
Each device, e.g., a sensor or smartphone, can both collect
data and process it to contribute to an ML task. The server s
aggregates the results of each device’s local analysis, as will
be explained in Section III-B. Both the length and number of
time intervals may depend on the specific ML application. In
each interval t, we suppose a subset of devices V (t), indexed
by i, is active (i.e., available to collect and/or process data).
For simplicity of notation, we omit i’s dependence on t.
Data collection and processing. We use Di(t) to denote
the set of data collected by device i ∈ V (t) at time t;

Device 1 Device n

…

Parameter
Server

wn(t) wn(t� 1)

� ⌘rLn (wn(t� 1)|Gn(t))
<latexit sha1_base64="3Psp+kdik92ivBvE38mQFCC9SPg=">AAACXXicbVHBTtwwEHVSaCGlsG0PPfRisSpaDqwSqNQeUTm0Bw4gsYC0XkUT72TXwnEie1K0SvcneyuX/kqdsFJbYCRLT++9GY+fs0orR3H8Kwifra0/f7GxGb3cerW903v95tKVtZU4kqUu7XUGDrUyOCJFGq8ri1BkGq+ym5NWv/qO1qnSXNCiwkkBM6NyJYE8lfaoEadgZ8hFATTP8uZ2uUzNgPa50JgTWFve8r2/YqvxA554XUR7B1wggTCQaeCnqel6Bk+4f3zthgqrZnPaT3v9eBh3xR+DZAX6bFVnae+nmJayLtCQ1ODcOIkrmjRgSUmNy0jUDiuQNzDDsYcGCnSTpktnyT94Zsrz0vpjiHfsvx0NFM4tisw728XdQ60ln9LGNeWfJ40yVU1o5P1Fea05lbyNmk+VRUl64QFIq/yuXM7BgiT/IZEPIXn45Mfg8nCYHA3j84/94y+rODbYe7bLBixhn9gx+8bO2IhJdhewYDOIgt/hergVbt9bw2DV85b9V+G7P+PisoE=</latexit>

w (k + 1)
<latexit sha1_base64="zrnasFKhM6isuI3Konr75xPwosE=">AAACBXicbVBNS8NAEN3Ur1q/oh71sFiEilASFfRY9OKxgv2AJpTNdtMu3WzC7kQpoRcv/hUvHhTx6n/w5r9x2+ag1QcDj/dmmJkXJIJrcJwvq7CwuLS8Ulwtra1vbG7Z2ztNHaeKsgaNRazaAdFMcMkawEGwdqIYiQLBWsHwauK37pjSPJa3MEqYH5G+5CGnBIzUtfe9iMAgCLP7sSdYCJUhPsaup3h/AEddu+xUnSnwX+LmpIxy1Lv2p9eLaRoxCVQQrTuuk4CfEQWcCjYuealmCaFD0mcdQyWJmPaz6RdjfGiUHg5jZUoCnqo/JzISaT2KAtM5uVnPexPxP6+TQnjhZ1wmKTBJZ4vCVGCI8SQS3OOKURAjQwhV3NyK6YAoQsEEVzIhuPMv/yXNk6p7WnVuzsq1yzyOItpDB6iCXHSOauga1VEDUfSAntALerUerWfrzXqftRasfGYX/YL18Q1sZpfb</latexit>

t = k⌧ + 1, . . . , k⌧ + ⌧
<latexit sha1_base64="jliK0qTxndMs1GcQz78HRmzonvI=">AAACC3icbVDLSsNAFJ3UV62vqEs3Q4sgWEqigm6EohuXFewDmlAmk0k7dPJg5kYopXs3/oobF4q49Qfc+TdO2iDaeuByD+fcy8w9XiK4Asv6MgpLyyura8X10sbm1vaOubvXUnEqKWvSWMSy4xHFBI9YEzgI1kkkI6EnWNsbXmd++55JxePoDkYJc0PSj3jAKQEt9cwy4Es8dICk+BjbVUf4Majqj5K1nlmxatYUeJHYOamgHI2e+en4MU1DFgEVRKmubSXgjokETgWblJxUsYTQIemzrqYRCZlyx9NbJvhQKz4OYqkrAjxVf2+MSajUKPT0ZEhgoOa9TPzP66YQXLhjHiUpsIjOHgpSgSHGWTDY55JRECNNCJVc/xXTAZGEgo6vpEOw509eJK2Tmn1as27PKvWrPI4iOkBldIRsdI7q6AY1UBNR9ICe0At6NR6NZ+PNeJ+NFox8Zx/9gfHxDV5cmLs=</latexit>

wn ((k + 1)⌧)
<latexit sha1_base64="+F2AVcs1KSfBypwayTZ0WhS9TIE=">AAACDXicbVBNS8NAEN3Ur1q/qh69LFahRSiJCnosevFYwX5AE8pmu2mXbjZhd6KU0D/gxb/ixYMiXr1789+4bXPQ1gcDj/dmmJnnx4JrsO1vK7e0vLK6ll8vbGxube8Ud/eaOkoUZQ0aiUi1faKZ4JI1gINg7VgxEvqCtfzh9cRv3TOleSTvYBQzLyR9yQNOCRipWzxyQwIDP0gfxl3pChZAuTzEJ9ipuEASV/H+ACrdYsmu2lPgReJkpIQy1LvFL7cX0SRkEqggWnccOwYvJQo4FWxccBPNYkKHpM86hkoSMu2l02/G+NgoPRxEypQEPFV/T6Qk1HoU+qZzcrue9ybif14ngeDSS7mME2CSzhYFicAQ4Uk0uMcVoyBGhhCquLkV0wFRhIIJsGBCcOZfXiTN06pzVrVvz0u1qyyOPDpAh6iMHHSBaugG1VEDUfSIntErerOerBfr3fqYteasbGYf/YH1+QMh3prv</latexit>

w (k + 1)
<latexit sha1_base64="zrnasFKhM6isuI3Konr75xPwosE=">AAACBXicbVBNS8NAEN3Ur1q/oh71sFiEilASFfRY9OKxgv2AJpTNdtMu3WzC7kQpoRcv/hUvHhTx6n/w5r9x2+ag1QcDj/dmmJkXJIJrcJwvq7CwuLS8Ulwtra1vbG7Z2ztNHaeKsgaNRazaAdFMcMkawEGwdqIYiQLBWsHwauK37pjSPJa3MEqYH5G+5CGnBIzUtfe9iMAgCLP7sSdYCJUhPsaup3h/AEddu+xUnSnwX+LmpIxy1Lv2p9eLaRoxCVQQrTuuk4CfEQWcCjYuealmCaFD0mcdQyWJmPaz6RdjfGiUHg5jZUoCnqo/JzISaT2KAtM5uVnPexPxP6+TQnjhZ1wmKTBJZ4vCVGCI8SQS3OOKURAjQwhV3NyK6YAoQsEEVzIhuPMv/yXNk6p7WnVuzsq1yzyOItpDB6iCXHSOauga1VEDUfSAntALerUerWfrzXqftRasfGYX/YL18Q1sZpfb</latexit>

Offload

Discard

Process

Fig. 2: Federated learning updates between aggregations k and k+1.
Device 1 discards all of its data or offloads it to device n, which
computes τ gradient updates on its local data. The final parameter
values are averaged at the parameter server, with the result sent back
to the devices to begin a new iteration.

d ∈ Di(t) denotes each datapoint. (We may have Di(t) = 0 if
a device does not collect data.) Gi(t), by contrast, denotes
the set of datapoints processed by each device at time t;
our optimization in Section III-C relates Gi(t) to the datasets
Di(t). In conventional learning frameworks, Di(t) = Gi(t),
as all devices process the data they collect [4]; separating these
variables is one of our main contributions. We suppose that
each device i can process up to Ci(t) datapoints at each time t,
incurring a cost of ci(t) for each point. This cost and capacity
may for instance represent the battery level; devices with low
battery will have lower capacities Ci(t) and higher costs ci(t).
Fog network connectivity. The devices V are connected to
each other via a set E of directed links, with (i, j) ∈ E
denoting a link from device i to j, and E(t) ⊆ E denoting the
set of functioning links at time t. The overall system then can
be described as a directed graph ({s, V } , E) with vertices
V representing the devices and edges E the links between
them. We suppose that ({s, V (t)} , E(t)) is fully connected at
each time t and that links between devices are single-hop, i.e.,
devices do not use each other as relays except possibly to the
server. Note that the scenarios outlined in Section I-A each
possess such an architecture: in smart factories, for example,
a subset of the floor sensors connect to each controller. Each
link (i, j) ∈ E(t) is characterized by a capacity Cij(t),
i.e., the maximum datapoints it can transfer, and a “cost of
connectivity” cij(t). This cost may reflect network conditions
(e.g., signal strengths, congestion) or a desire for privacy, and
will be higher if sending from i to j is less desirable at t.
Data structure. Each datapoint d can be represented as
(xd, yd), where xd is an attribute/feature vector and yd is an
associated label for model learning. We use DV = ∪i,tDi(t)
to denote the full set of datapoints collected by all devices over
all time. For simplicity, we follow prior work [22], [23] and
model the data collection at device i as points being selected
uniformly at random from a (usually unknown) distribution
Di. In practice the Di can evolve over time, but we assume
this evolution is slow compared to the horizon T . We use
D = ∪iDi to denote the global distribution induced by these
Di. Note this assumption implies the relationship between
xd and yd is temporally invariant, which is common in ML
applications, e.g., image recognition from cameras at fixed
locations or AR users with random mobility patterns. We will
use such an image dataset for evaluation in Section V.

B. Machine Learning Model

Our goal is to learn a parameterized model that outputs yd
given the input feature vector xd. We use the vector w to
denote the set of model parameters, whose values are chosen
so as to minimize a loss function L(w|D) that depends on
the ML model (e.g., squared error for linear regression, cross-
entropy loss for multi-class classifiers [24]). Since the overall
distributions Di are unknown, instead of minimizing L(w|D)
we minimize the empirical loss function, as commonly done:

minimize
w

L(w|DV) =

∑T
t=1

∑
i∈V (t)

∑
d∈Gi(t)

l(w, xd, yd)

|DV |
(1)

where l(w, xd, yd) is the error for datapoint d, and |DV | is the
number of datapoints. Note that the function l may include
regularization terms that aim to prevent model overfitting [8].

Fog computing allows (1) to be solved distributedly: instead
of computing the solution at the server s, we can use compu-
tations at each device i. Below, we follow the commonly used
federated averaging framework [4] in specifying these local
computations and global aggregation, illustrated by device n in
Figure 2. To avoid excessive re-optimization at each device, we
suppose that they execute the same local updating algorithm
regardless of Gi(t). We adjust the server averaging to account
for the amount of data each device processes.

1) Local loss minimization: In order to solve (1) in a
distributed manner, we first decompose the empirical loss
function into a weighted sum of local loss functions

Li(wi|Gi) =

∑T
t=1

∑
d∈Gi(t)

l(w, xd, yd)

|Gi|
(2)

where Gi ≡ ∪t≤TGi(t) denotes the set of datapoints pro-
cessed by device i over all times. The global loss in (1)
is then equal to L(w|DV) =

∑
i Li(w|Gi) |Gi| / |DV | if

∪iGi = DV , i.e., if all datapoints d ∈ DV are eventually
processed at some device.

Due to the inherent complexity of most ML models, loss
functions such as (2) are typically minimized using gradient
descent techniques [8]. Specifically, the devices update their
local parameter estimates at t according to

wi(t) = wi(t− 1)− η(t)∇Li(wi(t− 1)|Gi(t)) (3)

where η(t) > 0 is the step size, which often decreases
with t, and ∇Li(wi(t − 1)|Gi(t)) =

∑
d∈Gi(t)

∇l(wi(t −
1), xd, yd)/|Gi(t)| is the gradient with respect to w of the
average loss of points in the current dataset Gi(t) at the
parameter value wi(t − 1). We define the loss only on the
current dataset Gi(t) since future data in Gi has not yet been
revealed; since we assume each node’s data is i.i.d. over time,
we can view Li(wi(t − 1)|Gi(t)) as approximating the local
loss Li(wi|Gi). One can then interpret the computational cost
ci(t) of processing datapoint d as the cost of computing the
gradient ∇l(wi(t − 1), xd, yd). If the local data distributions
Di are all the same, then all datapoints across devices are
i.i.d. samples of this distribution, and this process is similar
to stochastic gradient descent with batch size |Gi(t)|.

2) Aggregation and synchronization: The aggregation
server s will periodically average the local estimates wi(t)
from the devices and synchronize the devices with a global
update. Formally, the kth aggregation is computed as

w(k) =

∑
iHi(kτ) · wi(kτ)∑

iHi(kτ)
(4)

where τ is the fixed aggregation period and Hi(kτ) =∑kτ
t=(k−1)τ+1 |Gi(t)| is the number of datapoints node i

processed since the last aggregation. Thus, the update is a
weighted average factoring in the sample size Hi on which
each wi(t) is based. Once this is computed, each device’s local
estimate is synchronized, i.e., wi(t)← w(t/τ). A lower value
of τ will result in faster convergence of w, while a higher value
requires less network resources. Prior work [4] has considered
how to optimize τ , so we assume it is pre-determined in our
formulation, analyzing its effect experimentally in Section V.

C. Optimization Model for Data Processing Tasks

We now consider the choice of Gi(t), which implicitly
defines the ML tasks to be executed by device i at time t,
i.e., processing all datapoints in Gi(t). There are two possible
reasons Gi(t) 6= Di(t): first, device i may offload some of its
collected data to another device j or vice versa, e.g., if i does
not have enough capacity (Di(t) ≥ Ci(t)) or possibly if j has
lower computing costs (cj(t) ≤ ci(t)). Second, device i may
discard data if processing it does not reduce the empirical loss
(1) by much. In Figure 2, device 1 offloads or discards all of
its data. We collectively refer to discarding and offloading as
data movement. We do not include the cost of communicating
parameter updates to/from the server in our model; unless a
device processes no data, the number of updates stays constant.

1) Data movement model: We define sij(t) ∈ [0, 1] as the
fraction of data collected at device i that is offloaded to device
j 6= i at time t. Thus, at time t, device i offloads Di(t)sij(t)
amount of data to j.1 Similarly, sii(t) will denote the fraction
of data collected at time t that device i also processes at time t.
We suppose that as long as Di(t)sij(t) ≤ Cij(t), the capacity
of the link between i and j 6= i, then all offloaded data will
reach j within one time interval and be processed at device j
in time interval t+ 1. Since devices must have a link between
them to offload data, sij(t) = 0 if (i, j) /∈ E(t). We also
define ri(t) ∈ [0, 1] as the fraction of data collected by device
i at time t that will be discarded. In doing so, we assume that
device j will not discard data that has been offloaded to it
by others, since that has already incurred an offloading cost
Di(t)sij(t)cij(t). The amount of data collected by device i
at time t and discarded is then Di(t)ri(t), and the amount of
data processed by each device i at time t is

Gi(t) = sii(t)Di(t) +
∑
j 6=i

sji(t− 1)Dj(t− 1).

In defining the variables sij(t) and ri(t), we have implicitly
specified the constraint ri(t)+

∑
j sij(t) = 1: all data collected

1For notational convenience, Di(t) here refers to the length |Di(t)|, and
similarly for Gi(t) in this section. The context makes the distinction clear.

by device i at time t must either be processed by device i
at this time, offloaded to another device j, or discarded. We
assume that devices will not store data for future processing,
which would add another cost component to the model.

2) Data movement optimization: We formulate the fol-
lowing cost minimization problem for determining the data
movement variables sij(t) and ri(t) over the time period:

minimize
sij(t),ri(t)

T∑
t=1

(∑
i

Gi(t)ci(t) +
∑

(i,j)∈E(t)

Di(t)sij(t)cij(t)

+
∑
i

fi(t)L (wi(t)|DV)

)
(5)

subject to Gi(t) = sii(t)Di(t) +
∑
j 6=i

sji(t− 1)Dj(t− 1)

(6)
sij(t) = 0, (i, j) /∈ E(t), j 6= i (7)

ri(t) +
∑
j

sij(t) = 1, sij(t), ri(t) ≥ 0 (8)

Gi(t) ≤ Ci(t), sij(t)Di(t) ≤ Cij(t) (9)

Constraints (6–8) were introduced above and ensure that the
solution is feasible. The capacity constraints in (9) ensure
that the amounts of data transferred and processed are within
link and node capacities, respectively. The three terms in the
objective (5) correspond to the processing, offloading, and
error costs, respectively, as we detail below.
(i) Processing, Gi(t)ci(t): This is the computing cost associ-
ated with processing Gi(t) of data at node i at time t.
(ii) Offloading, Di(t)sij(t)cij(t): This is the communication
cost incurred from node i offloading data to j.
(iii) Error, fi(t)L (wi(t)|DV): This cost quantifies the impact
of the data movement on the error of the model at each device
i; note that since wi(t) is computed as in (3), it is an implicit
function of Gi(t), the data processed at device i. We include
the error from each device i’s local model at each time t,
instead of simply considering the error of the final model,
since devices may need to make use of their local models as
they are updated (e.g., if aggregations are infrequent due to
resource constraints [4]). Discarding data clearly increases the
loss, since less data is used to train the ML model; offloading
may also skew the local model if it is updated over a small
number of samples Gi(t). We can, however, upper bound the
loss function L(wi(t)) regardless of the data movement:

Theorem 1 (Upper bound on the local loss). If Li(w) is
convex, ρ-Lipschitz, and β-smooth, if η ≤ 1

β , and if L(w(T))−
L(w?) ≥ ε for some ε > 0, then after K aggregations with a
period τ and defining the constant δi ≥ ||∇Li(w)−∇L(w)||,

L(wi(t))− L(w?) ≤ ε0 + ρgi(t−Kτ), (10)

where gi(x) = δi
β ((ηβ + 1)x − 1) implying gi(t − Kτ) is

decreasing in K, and ε0 is given by

1

tωη(2− βη)
+

√
1

t2ω2η2(2− βη)2
+
Kh(τ) + gi(t−Kτ)

tωη(1− βη/2)
.

Proof: Define vk(t) for t ∈ {(k − 1)τ, ..., kτ} as the
parameters under centralized gradient descent updates, θk(t) =
L(vk(t)) − L(w?), K = bt/τc, and assume θk(kτ) ≥ ε [4].
After lower-bounding 1

θK+1(t)
− 1

θ1(0)
and 1

L(wi(t))−L(w?) −
1

θK+1(t)
, we can upper-bound L(wi(t))− L(w?) as(

tωη
(
1− βη

2

)
− ρ

ε2
(
Kh(τ) + gi(t−Kτ)

))−1
= y(ε).

Let ε0 be the positive root of y(ε) = ε, which is easy to
check exists. The result follows since either min

k≤K
L(vk(kτ))−

L(w?) ≤ ε0 or L(wi(t))− L(w?) ≤ ε0; both imply (10).
In Section IV, we will consider how to use Theorem 1’s

result to find tractable forms of the loss expression that allow
us to solve (5–9) efficiently and accurately. Indeed, without
perfect information on the device costs, capacities, and error
statistics over the time period T , it is not possible to solve
(5–9) exactly. We will experimentally validate our proposed
methods for estimating these parameters in Section V.

IV. OPTIMIZATION MODEL ANALYSIS

We turn now to a theoretical analysis of the data movement
optimization problem (5–9). We discuss the choice of error
and capacity parameters under various assumptions (Section
IV-A), and then characterize the optimal solution for the ML
use cases outlined in Section I (Section IV-B).

A. Choosing Cost Parameters and Capacities

We may not be able to reliably estimate the cost parameters
cij(t), ci(t), and fi(t) or capacities Ci(t) and Cij(t) in real
time. Mis-estimations are likely in highly dynamic scenarios of
mobile devices, since the costs cij(t) of offloading data depend
on network conditions at the current device locations. Mobile
devices are also prone to occasional processing delays called
“straggler effects” [17], which can be modeled as variations in
their capacities. The error cost, on the other hand, will change
over time as the model parameters move towards convergence.
Here, we propose and analyze parameter selection methods.

1) Choosing capacities: Over-estimating the device pro-
cessing capacities will force some data processing to be
deferred until future time periods, which may cause a cascade
of processing delays. Under- or over-estimations of the link
capacities will have similar effects. Here, we formalize guide-
lines for choosing the capacities in (9)’s constraints so as to
limit delays due to over-estimation. As commonly done [25],
we assume that processing times on device stragglers follow
an exponential distribution exp(µ) for parameter µ.

For device capacities, we obtain the following result:

Theorem 2 (Data processing time with compute stragglers).
Suppose that the service time of processing a datapoint at
node i follows exp(µi), and that cij(t), ci(t), Ci(t) are
time invariant. We can ensure the average waiting time of
a datapoint to be processed is lower than a given threshold
σ by setting the device capacity parameter Ci such that
φ(Ci) = σµi/(1 + σµi), where φ(Ci) is the smallest solution

to the equation φ = exp (−µi(1− φ)/Ci), which is an
increasing function of Ci.

Proof: The processing at node i follows a D/M/1 queue
with an arrival rate Gi(t) ≤ Ci, and the result follows from
the average waiting time in such a queue.

For instance, σ = 1 guarantees an average processing time
of less than one time slot, as assumed in Section III’s model.
Thus, Theorem 2 shows that we can still (probabilistically)
bound the data processing time when stragglers are present.

Network link congestion in transferring data may also
delay its processing. Such delays can be handled by carefully
choosing the network capacity analogously to Theorem 2’s
method; details can be found in our technical report [11].

2) Choosing error expressions: As shown in Theorem 1,
we can bound the local loss at time t in terms of a gradient
divergence constant δi ≥ ‖∇Li(w)−∇L(w)‖. The following
in turn provides an upper bound for δi in terms of Gi(t):

Lemma 1 (I.i.d. error convergence). Suppose that the distri-
butions Di are identical so that Di = D, and that D has finite
second and third moments. Then there exists a constant γ > 0
that does not depend on the value of Gi(t) such that

δi ≡ ‖∇Li (w|Gi(t))−∇L(w)‖ ≤ γ√
Gi(t)

(11)

Proof: The result follows immediately from the central
limit theorem upon viewing each ∇l(w, xd, yd) as a sample
from the distribution induced by ∇l(w|D).

Assuming i.i.d. data distributions is reasonable for many ML
applications: for instance, AR users might follow statistically
similar mobility patterns throughout an area, and sensors on
a factory floor might monitor machines with similar failure
patterns. Combining the result in Lemma 1 with Theorem 1,
we find that L(wi(t)) − L(w?) ∝

√
Gi(t)−1. Thus, it is

possible to take the error cost fi(t)L(wi(t)|DV) in (5) as
fi(t)

√
Gi(t)−1 with fi(t) scaling the error importance; fi(t)

may decrease over time as the model approaches convergence.
Since

√
Gi(t)−1 is a convex function of Gi(t), with this

choice of error cost, (5–9) becomes a convex optimization
problem and can be solved relatively easily in theory. When
the number of variables is large, however – e.g., if the number
of devices n > 100 with T > 100 time periods – standard
interior point solvers will be prohibitively slow [26]. In such
cases, we may wish to approximate the error term with a linear
function and leverage faster linear optimization techniques,
i.e., to take the error cost as fi(t)Gi(t) but with fi(t) < 0
since the error decreases when Gi(t) increases. If we neglect
the offloaded data sij(t) for j 6= i, we can rewrite this cost
as fi(t)Di(t)[1 − ri(t)], which is equivalent to minimizing
−fi(t)ri(t). The error costs from the offloaded data can then
be folded into the communication costs cij(t), and we can
approximate the error cost as −fi(t)Di(t)ri(t). Intuitively,
discarding data implies a less accurate model.

B. Optimal Task Distributions
Given a set of cost and capacity parameters for the opti-

mization (5–9), we now characterize the optimal solutions in

Use case Topology Dynamics

Smart factories [1] Hierarchical Fairly static
Connected vehicles [1] Hierarchical Rapid changes

Augmented reality [2]
Hierarchical, Rapid changes

heterogeneous possible
Privacy-sensitive [3], [17] Social network Fairly static

TABLE I: Dominant characteristics of the four use cases.

a range of practical cases. In particular, when we consider a
linear error term fi(t)ri(t)Di(t), we have the following result:

Theorem 3 (Unconstrained resource solution). Suppose that
Ci(t) ≥ Di(t) +

∑
j∈Ni(t−1)Dj(t− 1) for each device i, i.e.,

its compute capacity always exceeds the data it collects as
well as any data offloaded to it by its neighbors Ni(t− 1) =
{j : (j, i) ∈ E(t − 1)}. Then if the error cost is linearly
approximated as fi(t)Di(t)ri(t), the optimal s∗ij(t) and r∗i (t)
will each be 0 or 1, with the conditions for 1 at node i being:

s∗ik(t) = 1 if cik(t) + ck(t+ 1) ≤ min {fi(t), ci(t)}
s∗ii(t) = 1 if ci(t) ≤ min {fi(t), cik(t) + ck(t+ 1)}
r∗i (t) = 1 if fi(t) ≤ min {ci(t), cik(t) + ck(t+ 1)}

(12)
where k = arg min

j 6=i,(i,j)∈E(t)

{cij(t) + cj(t+ 1)}.

Proof: Since ri(t) +
∑
j sij(t) = 1 in (8), each datapoint

in Di(t) is either discarded, offloaded, or processed at i. It is
optimal to choose the option with least marginal cost.

This theorem implies that in the absence of resource con-
straints, all data a device generates will either be processed,
offloaded to the lowest cost neighbor, or discarded. Below, we
examine implications of this result for typical fog topologies.
Fog use cases. Table I summarizes the topologies of the
four fog applications from Section I. Networks in smart
factories have fairly static topologies, since they are deployed
in controlled indoor settings. They also exhibit a hierarchical
structure, with less powerful devices connected to more power-
ful ones in a tree-like manner, as shown in Figure 1. Connected
vehicles have a similar hierarchical structure, with sensors and
vehicles connected to more powerful edge servers, but their
architectures are more dynamic as vehicles are moving. Simi-
larly, AR applications feature (possibly heterogeneous) mobile
AR headsets connected to powerful edge servers. Applications
that involve privacy-sensitive data may have very different,
non-hierarchical topologies as the links between devices are
based on trust, i.e., comfort in sharing private information.
Since social relationships generally change slowly compared
to ML model training, these topologies are relatively static.

1) Hierarchical topologies: In hierarchical scenarios, more
powerful edge servers will likely always have sufficient ca-
pacity Ci(t) to handle all offloaded data (satisfying the as-
sumptions in Theorem 3), and they will likely experience
lower computing costs ci(t) as well compared to other devices.
Theorem 3 indicates that, with a linear error cost, sensors
would then offload their data to the edge servers, unless the
costs of offloading the data exceed the difference in computing
costs. In Section V, we will see on our Raspberry Pi testbed

that the network cost does indeed sometimes exceed the gain
in computing cost from offloading to more powerful devices.

When the cost of discarding data is nonlinear, the optimal
solution is less intuitive: it may be optimal to discard fractions
of data if the reduction in error is not worth the additional cost
of processing. Formally, in the case of a hierarchical topology,
we have the following result:

Theorem 4 (Data movement with nonlinear error costs).
Suppose that n devices with identical, constant processing
costs cj(t) = c and data generation rates Dj(t) = D
can offload their data to a single edge server, indexed as
n+ 1. Further assume that there are no resource constraints,
c > cn+1, the costs cij(t) = ct of transmitting to the server
are identical and constant, and the discard cost is given by
fi(t)L(wi(t)) = γ/

√
Gi(t) as in Lemma 1. Then, letting s

denote the fraction of data offloaded, for D sufficiently large,
the optimal amount of data discarded as a function of s is

r∗(s) = 1− 1

D

(γ
2c

) 2
3 − s. (13)

Given the optimal r∗, the optimal s∗ is given by

s∗ =
1

nD

(
γ

2(cn+1 + ct)

) 2
3

(14)

Proof: In the hierarchical scenario, the cost objective (5)
can be rewritten as

n(1−r−s)Dc+nsD(cn+1+ct)+
nγ√

(1− r − s)D
+

γ√
snD

.

Taking the partial derivatives with respect to r and s, and
noting that a large D forces r, s ∈ [0, 1] gives the result.

Intuitively, increases in the costs cn+1, ct, data D, or devices
n should cause the amount of data offloaded to decrease and
the amount discarded to increase. D has the strongest effect:
with more data at each node, the fraction needed for processing
at the server and devices to manage the discard cost decreases
inversely. The only cost that impacts r but not s is c, as it is
a device parameter that does not involve the network.

2) Social network topologies: When device networks are
larger and have more complex topologies, we can extrapolate
from Theorem 3’s characterization of individual device behav-
ior to understand data movement in the network as a whole.
Consider, for instance, a social network of users in which
edges are defined by willingness to share data (Figure 1b).
We can find the probability that a given device offloads data,
which allows us to determine the cost savings from offloading:

Theorem 5 (Value of offloading). Suppose the fraction of
devices with k neighbors equals N(k), e.g., in a scale-free
network N(k) = Γk1−γ for some constant Γ and γ ∈ (2, 3).
Suppose ci ∼ U(0, C) and cij = 0, where U(a, b) is the
uniform distribution between a and b, with no discarding. Then
the average cost savings, compared to no offloading, equals

n∑
k=1

N(k)

(
C

2
− C(−1)k

k + 2
−
k−1∑
l=0

(
k

l

)
C(−1)l(k + 3)

(l + 2)(l + 3)

)
.

(15)

Fig. 3: Our Raspberry Pi devices running local computations.

The processing cost model may for instance represent device
battery levels drawn uniformly at random from 0 (full charge)
to C (low charge). This result establishes that the reduction
in cost from enabling device offloading in such scenarios is
approximately linear in C: as the range of computing costs
increases in a scale-free topology, there is greater benefit from
offloading, since devices are more likely to find a neighbor
with lower cost. The expected reduction, however, may be
less than the average computing cost C/2 even in the absence
of link costs, as offloading data to another device does not
entirely eliminate the computing cost.

We finally consider the case in which resource constraints
are present, e.g., for less powerful edge devices. We can find
the expected number of devices with tight resource constraints:

Theorem 6 (Probability of resource constraint violation). Let
N(k) be the number of devices with k neighbors, and for each
device i with k neighbors, let pk(n) be the probability that its
neighbor j has n neighbors. Also let C̃ denote the distribution
of resource capacities, assumed to be i.i.d. across devices,
and let Di(t) = D be constant. Then if devices offload as in
Theorem 3, the expected number of devices whose capacity
constraints are violated is∫

C̃(x)

(
N∑
k=1

N(k)P

[
1− Po(k) + k

N∑
n=1

(
Po(n)pk(n)

n

)
≥ x

D

])
,

(16)
with Po(k) defined as the probability a device with k neighbors
offloads its data.

Proof: This follows from Theorem 3 and determining the
expected amount of data that will be processed at a node with
k neighbors when offloading is enabled.

Theorem 6 allows us to quantify the complexity of solv-
ing the data movement optimization problem when resource
constraints are in effect. We observe that it depends on not
just the resource constraints, but also on the distribution of
computing costs (through Po(k)), since these costs influence
the probability devices will want to offload in the first place.

V. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate our methodology
in several scenarios. We discuss the general setup in Section
V-A, and present our results in Sections V-B to V-D.

A. Experimental Setup

Data samples and ML models. We consider the MNIST
dataset [27], which contains 70K images of hand-written

Method MLP CNN
Centralized learning 92.58% 98.39%
Federated learning 90.33% 96.81%

Network-aware learning 90.34% 96.49%

TABLE II: Our method, centralized learning, and federated learning
show comparable accuracies on the test dataset.

Fig. 4: Training loss over time for each device observed with our
method. The average and variance drop over time as expected.

digits. We use 60K of them as the training dataset DV , and the
remainder as our test set. Each node i is randomly allocated
|Di(t)| ∼ U(0, |DV |/(nT)) datapoints from DV , without
replacement. We train a multilayer perceptron (MLP) and a
convolutional neural network (CNN) for image recognition
on MNIST, with cross entropy loss [28] as the loss function
L(w|DV), and constant learning rate η(t) = 0.01 in (3).
Unless otherwise stated, results are reported for CNN, an
aggregation period τ = 10 in (4), and T = 100 time intervals.
Cost and capacity parameters. In the default case, we
simulate n = 10 fog devices and one server. When imposed,
the capacity constraints Ci(t) and Cij(t) are drawn from
U(0, 4 maxDi(t)) and U(0, 4 maxDi(t)/n) respectively. Due
to randomization, results are averaged over several iterations.

We consider both real and synthetic cost parameters. For
the synthetic parameters, cij(t) ∼ U(0, 1/n) and ci(t) ∼
U(0, 1). The real-world measurements come from our testbed
consisting of six Raspberry Pis using AWS DynamoDB as
a cloud-based parameter server (Figure 3). Three Pis each
collect data and transmit it over bluetooth to another “gateway”
Pi. The three gateway nodes receive this data and can either
perform a local gradient update (processing time recorded
as ci(t)) or upload the data to DynamoDB (communication
time recorded as cij(t)) to be processed there. We collect 100
sets of processing and communication measurements while
training a two-layer fully connected neural network, with
devices communicating over 2.4 GHz WiFi or LTE cellular.
Centralized and federated learning. To see whether our
method compromises learning accuracy in considering net-
work costs as additional objectives, we compare against a
baseline of centralized ML training where all data is processed
at a single device (server). Additionally, we consider the
standard implementation of federated learning where there is
no data offloading or discarding (i.e., Gi(t) = Di(t)) and
aggregations occur after every time interval (i.e., τ = 1) [4].
Perfect information vs. estimation. As discussed in Section
IV-A, solving (5-9) in practice requires estimating the cost and
capacity parameters over the time horizon T . To do this, we
divide T into L intervals T1, ..., TL, and in each interval l, we

Setting Accuracy Cost
Process Transfer Discard Total Unit

A 82.89% 2078 0 0 2078 0.48
B 90.24% 367 620 166 1153 0.26
C 89.24% 326 606 67 999 0.23
D 82.10% 225 835 14 1074 0.24

TABLE III: Network costs and model accuracies obtained in four
different settings. The differences between (A), where no data trans-
fers are permitted, and (B)-(D), which are variants of network-aware
learning, show substantial improvements in resource utilization.

use the time-averaged observations of Di(t), pi(t), cij(t), and
Ci(t) over Tl−1 to compute the optimal data movement. The
resulting s?ij(t) and r?i (t) for t ∈ Tl are then be used by device
i to transfer data in Tl. This “imperfect information” scheme
will be compared with the ideal case of perfect information.

B. Efficacy of Network-Aware Learning

Our first experiments seek to establish the overall efficacy of
our method. Here, we use the synthetic cost parameters with a
fully connected topology E(t) = {(i, j) : i 6= j}; qualitatively
similar results were observed with other configurations.
Model accuracy. Table II compares the average accuracy on
the testing datasets obtained by the MLP and CNN models
trained with centralized, federated, and network-aware learn-
ing, where the centralized and federated cases are run until
convergence. Our method does well: it matches federated
learning’s accuracy, and does only 2% worse than centralized
learning. We also plot the training loss Li(wi(t)) across
devices over time in Figure 4, confirming that while some
devices have higher local losses, all tend to decrease over time.
Cost reduction with imperfect information. Table III com-
pares the costs incurred and model accuracy for four settings:
(A) offloading and discarding disabled, (B) network-aware
learning with perfect information and no capacity constraints,
(C) network-aware learning with imperfect information and
no capacity constraints, and (D) network-aware learning with
imperfect information and capacity constraints. Each cost is
aggregated over nodes/links and time periods. The unit cost
normalizes the total cost over the amount of data generated in
that setting, to account for the Di(t) varying randomly.

Comparing (A) and (B), we see that allowing data transfers
substantially reduces the unit cost– by 46%. Surprisingly,
the accuracy also improves from (A) to (B) despite some
datapoints being discarded: when offloading without capacity
constraints, nodes with lower processing costs tend to receive
significantly more data, giving them a larger sample size
Gi(t) for gradient updates, and thus more accurate parameter
estimates that are more heavily weighted in the aggregations.
Even with imperfect information on the parameters in (C), we
observe only minor changes in cost or accuracy, highlighting
the robustness of the model to estimation errors similar to our
observations from the analytics results in Section IV-A. The
result for (D) furthers the point on solution accuracy: when
devices have strict capacity constraints, their gradient updates
are based on fewer samples, and each node’s Li(wi(t)) will
tend to have larger errors. However, the total cost of (D) is
still significantly lower than (A) with a comparable accuracy.

Fig. 5: Impact of the number of nodes n on (a) the average offloading
rate and (b) the different cost components. The shading in (a) shows
the range over time periods. We see that our method scales well with
the number of nodes, as the cost incurred per datapoint improves.

Fig. 6: Impact of the global aggregation period τ on (a) the cost
components and (b) the learning accuracy. Increasing τ causes the
total costs to decrease, but only improves learning accuracy to a point,
illustrating a tradeoff between synchronicity and error convergence.

C. Effect of Network System Parameters

Our next experiments on synthetic cost data assess the
impact of n, the number of nodes, and the aggregation period,
τ , on a fully connected topology. Then, we consider the effect
of connectivity when nodes are connected in a random graph
with probability ρ, i.e., P [(i, j) ∈ E(t), j 6= i] = ρ.
Varying number of nodes n. Figure 5 shows the (a) offload-
ing rate and (b) unit costs as the network size changes. Overall,
we see that our method scales well with the number of nodes,
as the unit (i.e., per datapoint) cost steadily decreases with n.
The transferring (i.e., offloading) cost drives this improvement,
as the processing and discarding costs actually increase: with
more nodes, the network leverages lower cost opportunities
for offloading – hence the increase in offloading rate to over
80% when n = 50 – as long as it is less than any increase
in processing cost, consistent with Theorem 3. The learning
accuracy increases slightly from 88 to 92% as n increases.
Varying aggregation period τ . Figure 6 shows the (a)
unit costs and (b) learning accuracy as the period of global
aggregation is varied. A larger value of τ yields smaller total
unit cost, but only improves learning accuracy until roughly
τ = 20: below this, the nodes are not processing enough
datapoints in-between aggregations for the local parameters
to become steady, and above it, the local models are not
synchronized frequently enough. We also note that the cost
breakdown exhibits a different trend than in Figure 5, as the
transmission cost stays relatively constant while the processing
and discarding costs decrease: with a longer τ , data can be
discarded with a lower cost towards the end of each period.

Fig. 7: Impact of the network connectivity ρ on data movement and costs in network-aware learning. Overall, we see that the costs are
reasonably robust to ρ, with nodes offloading less frequently as ρ decreases. The learning accuracy, by contrast, tends to improve with ρ.

Fig. 8: Cost components for social, hierarchical, and fully connected
topologies running network-aware learning on (a) LTE and (b) WiFi
network media. Transmission costs dominate for each topology in the
case of WiFi, while for LTE the processing costs are the largest.

Varying network connectivity ρ. In Figure 7, we plot the (a)
fraction of processed data, (b) offloading rate, (c) costs, and (d)
learning accuracy as the network connectivity changes. We see
that our network-aware learning methodology is reasonably
robust to ρ in terms of cost (for ρ > 0.1): when connectivity
drops, there are less low-cost opportunities for offloading, so
nodes do not transfer as much data. The learning accuracy,
by contrast, tends to benefit from higher connectivity (for ρ >
0.5), since low cost nodes can process more of the data, similar
to setting (B) in Table III. Interestingly, while the percentage
of data discarded increases slightly with lower ρ, the discard
cost has the opposite trend: when nodes do not have the option
of low cost transfers, their Gi(t) become larger for smaller t,
causing the discard cost to drop more rapidly as in Lemma 1.

D. Effect of Fog Topology

Finally, we evaluate our network-aware learning methodol-
ogy on different fog computing topologies. We consider three
different graph structures: hierarchical and social network
topologies as studied in Section IV-B, and a fully connected
topology for completeness. The social network is generated
as a Watts-Strogatz small world graph [29] with each node
connected to n/5 of its neighbors, and the hierarchical network
connects each of the n/3 nodes with lowest processing costs
to two of the 2n/3 remaining nodes as leaves. We use the
cost parameters collected from our Raspberry Pi testbed, which
provides two different wireless network media: LTE and WiFi.

The resulting costs are shown in Figure 8. For LTE, we see
that processing dominates the cost distribution for all three

topologies, while for WiFi, the transfer costs are the largest:
WiFi has less interference mitigation techniques than cellular,
so in the presence of several devices we expect its links to
exhibit larger delays. This is also likely the reason why the
total cost is substantially higher under WiFi, since devices have
less lower cost options for offloading. This point is further
consistent with the fact that in the case of LTE, the social
and hierarchical topologies exhibit virtually the same costs:
despite guaranteed connections to higher powered nodes up
the hierarchy, the social network likely contains low cost links
to these nodes anyway. In the case of WiFi, by contrast, the
hierarchical topology has a noticeably higher offloading cost,
and lower discarding cost, than the social topology, since the
transmissions to high-power nodes occurs over high cost links.

VI. CONCLUSION AND FUTURE WORK

To the best of our knowledge, this paper is the first work to
consider distributing ML training tasks over devices in a fog
computing network. We develop a framework to optimize the
distribution of training tasks, taking into account both physical
computing and communication costs and the error achieved
by the models at each device. We derive new error bounds
when devices can transfer their local data processing to each
other, and theoretically bound the impact of these transfers
on the cost and accuracy of the model training. Through
experimentation with a popular machine learning task, we
show that our network-aware scheme significantly reduces the
cost of model training while achieving comparable accuracy.

Our framework and analysis point to several possible exten-
sions. First, while we do not observe significant heterogeneity
in compute times on our wireless testbed, in general fog
devices may experience compute straggling and failures, which
might benefit from more sophisticated offloading mechanisms.
Second, predicting devices’ mobility patterns and the resulting
network connectivity can likely further optimize the data
offloading. Finally, for some applications, one might wish to
learn individual models for each device, which would intro-
duce new performance tradeoffs in offloading data processing.

ACKNOWLEDGMENT

We thank the reviewers for their valuable comments. This
work was partially supported by NSF CNS-1909306 and the
Army Research Office under grant W911NF1910036.

REFERENCES

[1] Cisco Systems, “Demystifying 5G in Industrial IOT,” White Paper, 2019.
[Online]. Available: https://www.cisco.com/c/dam/en us/solutions/iot/
demystifying-5g-industrial-iot.pdf

[2] D. Chatzopoulos, C. Bermejo, Z. Huang, and P. Hui, “Mobile Aug-
mented Reality Survey: From where we are to where we go,” IEEE
Access, vol. 5, pp. 6917–6950, 2017.

[3] K. Rao, “The Path to 5G for Health Care,” IEEE Perspectives on 5G
Applications and Services. [Online]. Available: https://futurenetworks.
ieee.org/images/files/pdf/applications/5G--Health-Care030518.pdf

[4] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive Federated Learning in Resource Constrained Edge
Computing Systems,” IEEE Journal on Selected Areas in Communica-
tions, vol. 37, no. 6, pp. 1205–1221, 2019.

[5] M. Chiang and T. Zhang, “Fog and IoT: An Overview of Research
Opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854–
864, 2016.

[6] M. Somisetty, “Big Data Analytics in 5G,” IEEE
Perspectives on 5G Applications and Services. [Online].
Available: https://futurenetworks.ieee.org/images/files/pdf/applications/
Data-Analytics-in-5G-Applications030518.pdf

[7] S. Pu, W. Shi, J. Xu, and A. Nedić, “A Push-Pull Gradient Method for
Distributed Optimization in Networks,” in IEEE Conference on Decision
and Control (CDC), 2018, pp. 3385–3390.

[8] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks from Decentral-
ized Data,” in International Conference on Artificial Intelligence and
Statistics (AISTATS), 2017.

[9] T.-Y. Yang, C. Brinton, P. Mittal, M. Chiang, and A. Lan, “Learning
Informative and Private Representations via Generative Adversarial
Networks,” in IEEE International Conference on Big Data. IEEE,
2018, pp. 1534–1543.

[10] S. A. Ashraf, I. Aktas, E. Eriksson, K. W. Helmersson, and J. Ansari,
“Ultra-Reliable and Low-Latency Communication for Wireless Factory
Automation: From LTE to 5G,” in IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), 2016, pp. 1–8.

[11] Technical Report. www.cbrinton.net/fog-infocom-2020-tech.pdf.
[12] S. Dutta, G. Joshi, S. Ghosh, P. Dube, and P. Nagpurkar, “Slow

and Stale Gradients Can Win the Race: Error-Runtime Trade-offs in
Distributed SGD,” in International Conference on Artificial Intelligence
and Statistics (AISTATS), 2018, pp. 803–812.

[13] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated Learning: Strategies for Improving Communica-
tion Efficiency,” in Advances in Neural Information Processing Systems
(NeurIPS), 2016.

[14] R. Shokri and V. Shmatikov, “Privacy-Preserving Deep Learning,” in
ACM Conference on Computer and Communications Security (SIGSAC),
2015, pp. 1310–1321.

[15] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
Learning with Non-IID Data,” arXiv:1806.00582, 2018.

[16] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
Multi-Task Learning,” in Advances in Neural Information Processing
Systems (NeurIPS), 2017, pp. 4424–4434.

[17] G. Neglia, G. Calbi, D. Towsley, and G. Vardoyan, “The Role of Network
Topology for Distributed Machine Learning,” in IEEE Conference on
Computer Communications (INFOCOM), 2019, pp. 2350–2358.

[18] T. Chang, L. Zheng, M. Gorlatova, C. Gitau, C.-Y. Huang, and M. Chi-
ang, “Demo: Decomposing Data Analytics in Fog Networks,” in ACM
Conference on Embedded Networked Sensor Systems (SenSys), 2017.

[19] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “DeepDecision:
A Mobile Deep Learning Framework for Edge Video Analytics,” in
IEEE Conference on Computer Communications (INFOCOM), 2018,
pp. 1421–1429.

[20] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic Adaptive DNN
Surgery for Inference Acceleration on the Edge,” in IEEE Conference
on Computer Communications (INFOCOM), 2019, pp. 1423–1431.

[21] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed Deep
Neural Networks over the Cloud, the Edge and End Devices,” in IEEE
International Conference on Distributed Computing Systems (ICDCS),
2017, pp. 328–339.

[22] T. Yang, “Trading Computation for Communication: Distributed
Stochastic Dual Coordinate Ascent,” in Advances in Neural Information
Processing Systems (NeurIPS), 2013, pp. 629–637.

[23] Y. Zhang, J. Duchi, M. I. Jordan, and M. J. Wainwright, “Information-
theoretic Lower Bounds for Distributed Statistical Estimation with Com-
munication Constraints,” in Advances in Neural Information Processing
Systems (NeurIPS), 2013, pp. 2328–2336.

[24] K. P. Murphy, Machine Learning: A Probabilistic Perspective. MIT
Press, 2012.

[25] F. Farhat, D. Z. Tootaghaj, Y. He, A. Sivasubramaniam, M. Kandemir,
and C. R. Das, “Stochastic Modeling and Optimization of Stragglers,”
IEEE Transactions on Cloud Computing, vol. 6, no. 4, pp. 1164–1177,
2016.

[26] F. M. F. Wong, Z. Liu, M. Chiang, F. Ming Fai Wong, Z. Liu, and
M. Chiang, “On the Efficiency of Social Recommender Networks,”
IEEE/ACM Transactions on Networking, vol. 24, no. 4, pp. 2512–2524,
2016.

[27] Y. LeCun, C. Cortes, and C. J. C. Burges, “The MNIST Database of
Handwritten Digits.” [Online]. Available: http://yann.lecun.com/exdb/
mnist/

[28] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation Applied to Handwritten
Zip Code Recognition,” Neural Computation, vol. 1, no. 4, pp. 541–551,
1989.

[29] M. Chiang, Networked Life: 20 Questions and Answers. Cambridge
University Press, 2012.

